Learn more

Refine search


Results (1-50 of 186 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\GL_{2}(\F_{337})$.

Group Label Order Size Centralizer Powers Representative
2P 3P 7P
$D_{56}:C_6$ 1A $1$ $1$ $D_{56}:C_6$ 1A 1A 1A $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $
$D_{56}:C_6$ 2A $2$ $1$ $D_{56}:C_6$ 1A 2A 2A $ \left(\begin{array}{rr} 336 & 0 \\ 0 & 336 \end{array}\right) $
$D_{56}:C_6$ 2B $2$ $2$ $C_2\times C_{168}$ 1A 2B 2B $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 336 \end{array}\right) $
$D_{56}:C_6$ 2C $2$ $28$ $C_2\times C_{12}$ 1A 2C 2C $ \left(\begin{array}{rr} 0 & 173 \\ 150 & 0 \end{array}\right) $
$D_{56}:C_6$ 2D $2$ $28$ $C_2\times C_{12}$ 1A 2D 2D $ \left(\begin{array}{rr} 0 & 7 \\ 289 & 0 \end{array}\right) $
$D_{56}:C_6$ 3A1 $3$ $1$ $D_{56}:C_6$ 3A-1 1A 3A1 $ \left(\begin{array}{rr} 208 & 0 \\ 0 & 208 \end{array}\right) $
$D_{56}:C_6$ 3A-1 $3$ $1$ $D_{56}:C_6$ 3A1 1A 3A-1 $ \left(\begin{array}{rr} 128 & 0 \\ 0 & 128 \end{array}\right) $
$D_{56}:C_6$ 4A1 $4$ $1$ $D_{56}:C_6$ 2A 4A-1 4A-1 $ \left(\begin{array}{rr} 148 & 0 \\ 0 & 148 \end{array}\right) $
$D_{56}:C_6$ 4A-1 $4$ $1$ $D_{56}:C_6$ 2A 4A1 4A1 $ \left(\begin{array}{rr} 189 & 0 \\ 0 & 189 \end{array}\right) $
$D_{56}:C_6$ 4B $4$ $2$ $C_2\times C_{168}$ 2A 4B 4B $ \left(\begin{array}{rr} 148 & 0 \\ 0 & 189 \end{array}\right) $
$D_{56}:C_6$ 4C $4$ $28$ $C_2\times C_{12}$ 2A 4C 4C $ \left(\begin{array}{rr} 0 & 295 \\ 329 & 0 \end{array}\right) $
$D_{56}:C_6$ 4D $4$ $28$ $C_2\times C_{12}$ 2A 4D 4D $ \left(\begin{array}{rr} 0 & 25 \\ 310 & 0 \end{array}\right) $
$D_{56}:C_6$ 6A1 $6$ $1$ $D_{56}:C_6$ 3A-1 2A 6A1 $ \left(\begin{array}{rr} 129 & 0 \\ 0 & 129 \end{array}\right) $
$D_{56}:C_6$ 6A-1 $6$ $1$ $D_{56}:C_6$ 3A1 2A 6A-1 $ \left(\begin{array}{rr} 209 & 0 \\ 0 & 209 \end{array}\right) $
$D_{56}:C_6$ 6B1 $6$ $2$ $C_2\times C_{168}$ 3A1 2B 6B1 $ \left(\begin{array}{rr} 128 & 0 \\ 0 & 209 \end{array}\right) $
$D_{56}:C_6$ 6B-1 $6$ $2$ $C_2\times C_{168}$ 3A-1 2B 6B-1 $ \left(\begin{array}{rr} 208 & 0 \\ 0 & 129 \end{array}\right) $
$D_{56}:C_6$ 6C1 $6$ $28$ $C_2\times C_{12}$ 3A1 2C 6C1 $ \left(\begin{array}{rr} 0 & 239 \\ 328 & 0 \end{array}\right) $
$D_{56}:C_6$ 6C-1 $6$ $28$ $C_2\times C_{12}$ 3A-1 2C 6C-1 $ \left(\begin{array}{rr} 0 & 262 \\ 196 & 0 \end{array}\right) $
$D_{56}:C_6$ 6D1 $6$ $28$ $C_2\times C_{12}$ 3A-1 2D 6D1 $ \left(\begin{array}{rr} 0 & 108 \\ 126 & 0 \end{array}\right) $
$D_{56}:C_6$ 6D-1 $6$ $28$ $C_2\times C_{12}$ 3A1 2D 6D-1 $ \left(\begin{array}{rr} 0 & 222 \\ 259 & 0 \end{array}\right) $
$D_{56}:C_6$ 7A1 $7$ $2$ $C_2\times C_{168}$ 7A2 7A3 1A $ \left(\begin{array}{rr} 64 & 0 \\ 0 & 79 \end{array}\right) $
$D_{56}:C_6$ 7A2 $7$ $2$ $C_2\times C_{168}$ 7A3 7A1 1A $ \left(\begin{array}{rr} 52 & 0 \\ 0 & 175 \end{array}\right) $
$D_{56}:C_6$ 7A3 $7$ $2$ $C_2\times C_{168}$ 7A1 7A2 1A $ \left(\begin{array}{rr} 295 & 0 \\ 0 & 8 \end{array}\right) $
$D_{56}:C_6$ 8A1 $8$ $2$ $C_2\times C_{168}$ 4B 8A3 8A1 $ \left(\begin{array}{rr} 252 & 0 \\ 0 & 111 \end{array}\right) $
$D_{56}:C_6$ 8A3 $8$ $2$ $C_2\times C_{168}$ 4B 8A1 8A3 $ \left(\begin{array}{rr} 226 & 0 \\ 0 & 85 \end{array}\right) $
$D_{56}:C_6$ 8B1 $8$ $2$ $C_2\times C_{168}$ 4B 8B1 8B-1 $ \left(\begin{array}{rr} 252 & 0 \\ 0 & 226 \end{array}\right) $
$D_{56}:C_6$ 8B-1 $8$ $2$ $C_2\times C_{168}$ 4B 8B-1 8B1 $ \left(\begin{array}{rr} 111 & 0 \\ 0 & 85 \end{array}\right) $
$D_{56}:C_6$ 12A1 $12$ $1$ $D_{56}:C_6$ 6A1 4A1 12A-5 $ \left(\begin{array}{rr} 265 & 0 \\ 0 & 265 \end{array}\right) $
$D_{56}:C_6$ 12A-1 $12$ $1$ $D_{56}:C_6$ 6A-1 4A-1 12A5 $ \left(\begin{array}{rr} 117 & 0 \\ 0 & 117 \end{array}\right) $
$D_{56}:C_6$ 12A5 $12$ $1$ $D_{56}:C_6$ 6A-1 4A1 12A-1 $ \left(\begin{array}{rr} 220 & 0 \\ 0 & 220 \end{array}\right) $
$D_{56}:C_6$ 12A-5 $12$ $1$ $D_{56}:C_6$ 6A1 4A-1 12A1 $ \left(\begin{array}{rr} 72 & 0 \\ 0 & 72 \end{array}\right) $
$D_{56}:C_6$ 12B1 $12$ $2$ $C_2\times C_{168}$ 6A1 4B 12B1 $ \left(\begin{array}{rr} 265 & 0 \\ 0 & 72 \end{array}\right) $
$D_{56}:C_6$ 12B-1 $12$ $2$ $C_2\times C_{168}$ 6A-1 4B 12B-1 $ \left(\begin{array}{rr} 117 & 0 \\ 0 & 220 \end{array}\right) $
$D_{56}:C_6$ 12C1 $12$ $28$ $C_2\times C_{12}$ 6A-1 4C 12C1 $ \left(\begin{array}{rr} 0 & 311 \\ 316 & 0 \end{array}\right) $
$D_{56}:C_6$ 12C-1 $12$ $28$ $C_2\times C_{12}$ 6A1 4C 12C-1 $ \left(\begin{array}{rr} 0 & 16 \\ 324 & 0 \end{array}\right) $
$D_{56}:C_6$ 12D1 $12$ $28$ $C_2\times C_{12}$ 6A-1 4D 12D1 $ \left(\begin{array}{rr} 0 & 192 \\ 224 & 0 \end{array}\right) $
$D_{56}:C_6$ 12D-1 $12$ $28$ $C_2\times C_{12}$ 6A1 4D 12D-1 $ \left(\begin{array}{rr} 0 & 167 \\ 251 & 0 \end{array}\right) $
$D_{56}:C_6$ 14A1 $14$ $2$ $C_2\times C_{168}$ 7A1 14A3 2A $ \left(\begin{array}{rr} 329 & 0 \\ 0 & 42 \end{array}\right) $
$D_{56}:C_6$ 14A3 $14$ $2$ $C_2\times C_{168}$ 7A3 14A5 2A $ \left(\begin{array}{rr} 162 & 0 \\ 0 & 285 \end{array}\right) $
$D_{56}:C_6$ 14A5 $14$ $2$ $C_2\times C_{168}$ 7A2 14A1 2A $ \left(\begin{array}{rr} 258 & 0 \\ 0 & 273 \end{array}\right) $
$D_{56}:C_6$ 14B1 $14$ $2$ $C_2\times C_{168}$ 7A1 14B3 2B $ \left(\begin{array}{rr} 8 & 0 \\ 0 & 42 \end{array}\right) $
$D_{56}:C_6$ 14B-1 $14$ $2$ $C_2\times C_{168}$ 7A1 14B-3 2B $ \left(\begin{array}{rr} 295 & 0 \\ 0 & 329 \end{array}\right) $
$D_{56}:C_6$ 14B3 $14$ $2$ $C_2\times C_{168}$ 7A3 14B-5 2B $ \left(\begin{array}{rr} 175 & 0 \\ 0 & 285 \end{array}\right) $
$D_{56}:C_6$ 14B-3 $14$ $2$ $C_2\times C_{168}$ 7A3 14B5 2B $ \left(\begin{array}{rr} 52 & 0 \\ 0 & 162 \end{array}\right) $
$D_{56}:C_6$ 14B5 $14$ $2$ $C_2\times C_{168}$ 7A2 14B1 2B $ \left(\begin{array}{rr} 79 & 0 \\ 0 & 273 \end{array}\right) $
$D_{56}:C_6$ 14B-5 $14$ $2$ $C_2\times C_{168}$ 7A2 14B-1 2B $ \left(\begin{array}{rr} 64 & 0 \\ 0 & 258 \end{array}\right) $
$D_{56}:C_6$ 21A1 $21$ $2$ $C_2\times C_{168}$ 21A2 7A1 3A1 $ \left(\begin{array}{rr} 4 & 0 \\ 0 & 32 \end{array}\right) $
$D_{56}:C_6$ 21A-1 $21$ $2$ $C_2\times C_{168}$ 21A-2 7A1 3A-1 $ \left(\begin{array}{rr} 253 & 0 \\ 0 & 158 \end{array}\right) $
$D_{56}:C_6$ 21A2 $21$ $2$ $C_2\times C_{168}$ 21A4 7A2 3A-1 $ \left(\begin{array}{rr} 16 & 0 \\ 0 & 13 \end{array}\right) $
$D_{56}:C_6$ 21A-2 $21$ $2$ $C_2\times C_{168}$ 21A-4 7A2 3A1 $ \left(\begin{array}{rr} 316 & 0 \\ 0 & 26 \end{array}\right) $
Next   displayed columns for results