Refine search
Elements of the group are displayed as permutations of degree 24.
| Group | Label | Order | Size | Centralizer | Powers | Representative | |
|---|---|---|---|---|---|---|---|
| 2P | 3P | ||||||
| $C_2^8.C_2^3:S_4$ | 1A | $1$ | $1$ | $C_2^8.C_2^3:S_4$ | 1A | 1A | $()$ |
| $C_2^8.C_2^3:S_4$ | 2A | $2$ | $1$ | $C_2^8.C_2^3:S_4$ | 1A | 2A | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2B | $2$ | $2$ | $C_2^8.C_2^4.C_6$ | 1A | 2B | $(5,6)(7,8)(13,14)(15,16)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2C | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2C | $(13,14)(15,16)(17,18)(19,20)$ |
| $C_2^8.C_2^3:S_4$ | 2D | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2D | $(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2E | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2E | $(9,10)(11,12)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2F | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2F | $(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $C_2^8.C_2^3:S_4$ | 2G | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2G | $(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2H | $2$ | $3$ | $C_2^7.C_2^6.C_2$ | 1A | 2H | $(1,2)(3,4)(5,6)(7,8)(13,14)(15,16)(17,18)(19,20)$ |
| $C_2^8.C_2^3:S_4$ | 2I | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2I | $(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2J | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2J | $(5,6)(7,8)(13,14)(15,16)(17,18)(19,20)$ |
| $C_2^8.C_2^3:S_4$ | 2K | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2K | $(5,6)(7,8)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2L | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2L | $(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2M | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2M | $(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2N | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2N | $(13,14)(15,16)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2O | $2$ | $6$ | $C_2^6.C_2^6.C_2$ | 1A | 2O | $(9,10)(11,12)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2P | $2$ | $24$ | $C_2.C_2^6.C_2^4$ | 1A | 2P | $(7,8)(9,11)(10,12)(13,15)(14,16)(19,20)$ |
| $C_2^8.C_2^3:S_4$ | 2Q | $2$ | $24$ | $C_2.C_2^6.C_2^4$ | 1A | 2Q | $(7,8)(9,11)(10,12)(13,15)(14,16)(17,18)$ |
| $C_2^8.C_2^3:S_4$ | 2R | $2$ | $24$ | $C_2.C_2^6.C_2^4$ | 1A | 2R | $(3,4)(5,6)(7,8)(9,10)(11,12)(15,16)(17,19)(18,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2S | $2$ | $24$ | $C_2.C_2^6.C_2^4$ | 1A | 2S | $(3,4)(5,6)(7,8)(9,10)(11,12)(15,16)(17,19)(18,20)(21,24)(22,23)$ |
| $C_2^8.C_2^3:S_4$ | 2T | $2$ | $48$ | not computed | 1A | 2T | $(11,12)(13,15)(14,16)(17,19)(18,20)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2U | $2$ | $48$ | not computed | 1A | 2U | $(7,8)(11,12)(17,19)(18,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2V | $2$ | $48$ | not computed | 1A | 2V | $(7,8)(9,11)(10,12)(13,15)(14,16)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2W | $2$ | $48$ | not computed | 1A | 2W | $(7,8)(9,11)(10,12)(13,15)(14,16)(17,18)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2X | $2$ | $48$ | not computed | 1A | 2X | $(5,7)(6,8)(11,12)(15,16)(17,19)(18,20)$ |
| $C_2^8.C_2^3:S_4$ | 2Y | $2$ | $48$ | not computed | 1A | 2Y | $(3,4)(7,8)(9,11)(10,12)(13,14)(15,16)(17,18)(19,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2Z | $2$ | $48$ | not computed | 1A | 2Z | $(3,4)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AA | $2$ | $48$ | not computed | 1A | 2AA | $(3,4)(5,7)(6,8)(9,11)(10,12)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AB | $2$ | $48$ | not computed | 1A | 2AB | $(5,7)(6,8)(9,12)(10,11)(17,20)(18,19)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AC | $2$ | $48$ | not computed | 1A | 2AC | $(1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AD | $2$ | $48$ | not computed | 1A | 2AD | $(1,2)(3,4)(5,6)(7,8)(11,12)(13,14)(17,18)(21,22)$ |
| $C_2^8.C_2^3:S_4$ | 2AE | $2$ | $48$ | not computed | 1A | 2AE | $(3,4)(7,8)(19,20)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AF | $2$ | $96$ | not computed | 1A | 2AF | $(7,8)(11,12)(13,14)(15,16)(17,19)(18,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AG | $2$ | $96$ | not computed | 1A | 2AG | $(7,8)(9,11)(10,12)(15,16)(17,19)(18,20)$ |
| $C_2^8.C_2^3:S_4$ | 2AH | $2$ | $96$ | not computed | 1A | 2AH | $(7,8)(9,11)(10,12)(15,16)(17,19)(18,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AI | $2$ | $96$ | not computed | 1A | 2AI | $(5,6)(7,8)(11,12)(15,16)(19,20)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AJ | $2$ | $96$ | not computed | 1A | 2AJ | $(5,6)(7,8)(11,12)(13,15)(14,16)(17,19)(18,20)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AK | $2$ | $96$ | not computed | 1A | 2AK | $(5,7)(6,8)(11,12)(15,16)(17,19)(18,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AL | $2$ | $96$ | not computed | 1A | 2AL | $(5,7)(6,8)(11,12)(13,15)(14,16)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AM | $2$ | $96$ | not computed | 1A | 2AM | $(5,7)(6,8)(9,11)(10,12)(13,14)(15,16)(17,19)(18,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AN | $2$ | $96$ | not computed | 1A | 2AN | $(3,4)(5,6)(7,8)(9,10)(11,12)(13,15)(14,16)(19,20)(21,23)(22,24)$ |
| $C_2^8.C_2^3:S_4$ | 2AO | $2$ | $192$ | not computed | 1A | 2AO | $(1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,17)(14,18)(15,19)(16,20)$ |
| $C_2^8.C_2^3:S_4$ | 2AP | $2$ | $192$ | not computed | 1A | 2AP | $(1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,18)(16,17)$ |
| $C_2^8.C_2^3:S_4$ | 3A | $3$ | $2048$ | not computed | 3A | 1A | $(1,11,17)(2,12,18)(3,10,19)(4,9,20)(5,14,23)(6,13,24)(7,15,21)(8,16,22)$ |
| $C_2^8.C_2^3:S_4$ | 4A | $4$ | $12$ | $C_2^5.C_2^3.C_2^4$ | 2C | 4A | $(13,15,14,16)(17,19,18,20)$ |
| $C_2^8.C_2^3:S_4$ | 4B | $4$ | $12$ | $C_2^5.C_2^3.C_2^4$ | 2C | 4B | $(9,10)(11,12)(13,15,14,16)(17,19,18,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 4C | $4$ | $12$ | $C_2^5.C_2^3.C_2^4$ | 2C | 4C | $(5,7,6,8)(9,11,10,12)(17,18)(19,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 4D | $4$ | $12$ | $C_2^5.C_2^3.C_2^4$ | 2C | 4D | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,15,14,16)(17,19,18,20)(21,22)(23,24)$ |
| $C_2^8.C_2^3:S_4$ | 4E1 | $4$ | $16$ | $(C_2\times C_4^3):S_4$ | 2A | 4E-1 | $(1,3,2,4)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,20,18,19)(21,24,22,23)$ |
| $C_2^8.C_2^3:S_4$ | 4E-1 | $4$ | $16$ | $(C_2\times C_4^3):S_4$ | 2A | 4E1 | $(1,4,2,3)(5,7,6,8)(9,11,10,12)(13,15,14,16)(17,19,18,20)(21,23,22,24)$ |