Elements of the group are displayed as permutations of degree 14.
| Group |
Label |
Order |
Size |
Centralizer |
Powers |
Representative |
| 2P |
3P |
5P |
11P |
| $S_3\times \PSL(2,11)$ |
1A |
$1$ |
$1$ |
$S_3\times \PSL(2,11)$ |
1A |
1A |
1A |
1A |
$()$ |
| $S_3\times \PSL(2,11)$ |
2A |
$2$ |
$3$ |
$C_2\times \PSL(2,11)$ |
1A |
2A |
2A |
2A |
$(12,14)$ |
| $S_3\times \PSL(2,11)$ |
2B |
$2$ |
$55$ |
$S_3\times D_6$ |
1A |
2B |
2B |
2B |
$(1,9)(3,6)(4,8)(7,10)$ |
| $S_3\times \PSL(2,11)$ |
2C |
$2$ |
$165$ |
$C_2\times D_6$ |
1A |
2C |
2C |
2C |
$(1,4)(2,8)(3,7)(5,6)(13,14)$ |
| $S_3\times \PSL(2,11)$ |
3A |
$3$ |
$2$ |
$C_3\times \PSL(2,11)$ |
3A |
1A |
3A |
3A |
$(12,13,14)$ |
| $S_3\times \PSL(2,11)$ |
3B |
$3$ |
$110$ |
$C_6\times S_3$ |
3B |
1A |
3B |
3B |
$(2,5,3)(6,7,8)(9,10,11)$ |
| $S_3\times \PSL(2,11)$ |
3C |
$3$ |
$220$ |
$C_3\times C_6$ |
3C |
1A |
3C |
3C |
$(1,6,7)(2,11,5)(3,10,9)(12,14,13)$ |
| $S_3\times \PSL(2,11)$ |
5A1 |
$5$ |
$132$ |
$C_5\times S_3$ |
5A2 |
5A2 |
1A |
5A1 |
$(1,10,8,5,11)(2,4,6,7,3)$ |
| $S_3\times \PSL(2,11)$ |
5A2 |
$5$ |
$132$ |
$C_5\times S_3$ |
5A1 |
5A1 |
1A |
5A2 |
$(1,8,11,10,5)(2,6,3,4,7)$ |
| $S_3\times \PSL(2,11)$ |
6A |
$6$ |
$110$ |
$C_6\times S_3$ |
3A |
2B |
6A |
6A |
$(2,10)(3,8)(4,11)(7,9)(12,13,14)$ |
| $S_3\times \PSL(2,11)$ |
6B |
$6$ |
$110$ |
$C_6\times S_3$ |
3B |
2B |
6B |
6B |
$(1,7,3,9,2,11)(4,5)(6,10,8)$ |
| $S_3\times \PSL(2,11)$ |
6C |
$6$ |
$220$ |
$C_3\times C_6$ |
3C |
2B |
6C |
6C |
$(1,10,6,9,7,3)(2,5,11)(4,8)(12,13,14)$ |
| $S_3\times \PSL(2,11)$ |
6D |
$6$ |
$330$ |
$C_2\times C_6$ |
3B |
2C |
6D |
6D |
$(1,4)(2,7,5,8,3,6)(9,11,10)(13,14)$ |
| $S_3\times \PSL(2,11)$ |
6E |
$6$ |
$330$ |
$C_2\times C_6$ |
3B |
2A |
6E |
6E |
$(1,2,11)(4,8,9)(5,7,6)(12,14)$ |
| $S_3\times \PSL(2,11)$ |
10A1 |
$10$ |
$396$ |
$C_{10}$ |
5A1 |
10A3 |
2A |
10A1 |
$(1,2,7,9,10)(3,11,4,8,5)(12,14)$ |
| $S_3\times \PSL(2,11)$ |
10A3 |
$10$ |
$396$ |
$C_{10}$ |
5A2 |
10A1 |
2A |
10A3 |
$(1,9,2,10,7)(3,8,11,5,4)(12,14)$ |
| $S_3\times \PSL(2,11)$ |
11A1 |
$11$ |
$60$ |
$S_3\times C_{11}$ |
11A-1 |
11A1 |
11A1 |
1A |
$(1,2,3,11,6,10,5,8,9,4,7)$ |
| $S_3\times \PSL(2,11)$ |
11A-1 |
$11$ |
$60$ |
$S_3\times C_{11}$ |
11A1 |
11A-1 |
11A-1 |
1A |
$(1,7,4,9,8,5,10,6,11,3,2)$ |
| $S_3\times \PSL(2,11)$ |
15A1 |
$15$ |
$264$ |
$C_{15}$ |
15A2 |
5A1 |
3A |
15A1 |
$(1,8,11,10,5)(2,6,3,4,7)(12,14,13)$ |
| $S_3\times \PSL(2,11)$ |
15A2 |
$15$ |
$264$ |
$C_{15}$ |
15A1 |
5A2 |
3A |
15A2 |
$(1,11,5,8,10)(2,3,7,6,4)(12,13,14)$ |
| $S_3\times \PSL(2,11)$ |
22A1 |
$22$ |
$180$ |
$C_{22}$ |
11A1 |
22A1 |
22A1 |
2A |
$(1,5,2,8,3,9,11,4,6,7,10)(12,14)$ |
| $S_3\times \PSL(2,11)$ |
22A-1 |
$22$ |
$180$ |
$C_{22}$ |
11A-1 |
22A-1 |
22A-1 |
2A |
$(1,10,7,6,4,11,9,3,8,2,5)(12,14)$ |
| $S_3\times \PSL(2,11)$ |
33A1 |
$33$ |
$120$ |
$C_{33}$ |
33A-1 |
11A-1 |
33A1 |
3A |
$(1,5,3,10,4,6,8,2,7,9,11)(12,14,13)$ |
| $S_3\times \PSL(2,11)$ |
33A-1 |
$33$ |
$120$ |
$C_{33}$ |
33A1 |
11A1 |
33A-1 |
3A |
$(1,11,9,7,2,8,6,4,10,3,5)(12,13,14)$ |