Learn more

Refine search


Results (1-50 of 153 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\GL(2,151)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 19P 151P
$\PGL(2,151)$ 1A $1$ $1$ $\PGL(2,151)$ 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PGL(2,151)$ 2A $2$ $11325$ $D_{152}$ 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 1 & 94 \\ 113 & 150 \end{array}\right) \right] $
$\PGL(2,151)$ 2B $2$ $11476$ $D_{150}$ 1A 2B 2B 2B 2B $ \left[ \left(\begin{array}{rr} 118 & 111 \\ 23 & 33 \end{array}\right) \right] $
$\PGL(2,151)$ 3A $3$ $22952$ $C_{150}$ 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 48 & 36 \\ 85 & 49 \end{array}\right) \right] $
$\PGL(2,151)$ 4A $4$ $22650$ $C_{152}$ 2A 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 116 & 95 \\ 13 & 69 \end{array}\right) \right] $
$\PGL(2,151)$ 5A1 $5$ $22952$ $C_{150}$ 5A2 5A2 1A 5A1 5A1 $ \left[ \left(\begin{array}{rr} 1 & 98 \\ 72 & 96 \end{array}\right) \right] $
$\PGL(2,151)$ 5A2 $5$ $22952$ $C_{150}$ 5A1 5A1 1A 5A2 5A2 $ \left[ \left(\begin{array}{rr} 134 & 31 \\ 69 & 30 \end{array}\right) \right] $
$\PGL(2,151)$ 6A $6$ $22952$ $C_{150}$ 3A 2B 6A 6A 6A $ \left[ \left(\begin{array}{rr} 84 & 100 \\ 18 & 70 \end{array}\right) \right] $
$\PGL(2,151)$ 8A1 $8$ $22650$ $C_{152}$ 4A 8A3 8A3 8A3 8A1 $ \left[ \left(\begin{array}{rr} 14 & 37 \\ 75 & 10 \end{array}\right) \right] $
$\PGL(2,151)$ 8A3 $8$ $22650$ $C_{152}$ 4A 8A1 8A1 8A1 8A3 $ \left[ \left(\begin{array}{rr} 99 & 20 \\ 114 & 105 \end{array}\right) \right] $
$\PGL(2,151)$ 10A1 $10$ $22952$ $C_{150}$ 5A1 10A3 2B 10A1 10A1 $ \left[ \left(\begin{array}{rr} 22 & 129 \\ 141 & 13 \end{array}\right) \right] $
$\PGL(2,151)$ 10A3 $10$ $22952$ $C_{150}$ 5A2 10A1 2B 10A3 10A3 $ \left[ \left(\begin{array}{rr} 16 & 91 \\ 110 & 115 \end{array}\right) \right] $
$\PGL(2,151)$ 15A1 $15$ $22952$ $C_{150}$ 15A2 5A1 3A 15A4 15A1 $ \left[ \left(\begin{array}{rr} 15 & 109 \\ 77 & 39 \end{array}\right) \right] $
$\PGL(2,151)$ 15A2 $15$ $22952$ $C_{150}$ 15A4 5A2 3A 15A7 15A2 $ \left[ \left(\begin{array}{rr} 85 & 18 \\ 118 & 10 \end{array}\right) \right] $
$\PGL(2,151)$ 15A4 $15$ $22952$ $C_{150}$ 15A7 5A1 3A 15A1 15A4 $ \left[ \left(\begin{array}{rr} 7 & 113 \\ 120 & 115 \end{array}\right) \right] $
$\PGL(2,151)$ 15A7 $15$ $22952$ $C_{150}$ 15A1 5A2 3A 15A2 15A7 $ \left[ \left(\begin{array}{rr} 62 & 30 \\ 96 & 88 \end{array}\right) \right] $
$\PGL(2,151)$ 19A1 $19$ $22650$ $C_{152}$ 19A2 19A3 19A5 1A 19A1 $ \left[ \left(\begin{array}{rr} 19 & 27 \\ 18 & 12 \end{array}\right) \right] $
$\PGL(2,151)$ 19A2 $19$ $22650$ $C_{152}$ 19A4 19A6 19A9 1A 19A2 $ \left[ \left(\begin{array}{rr} 113 & 104 \\ 19 & 114 \end{array}\right) \right] $
$\PGL(2,151)$ 19A3 $19$ $22650$ $C_{152}$ 19A6 19A9 19A4 1A 19A3 $ \left[ \left(\begin{array}{rr} 11 & 36 \\ 24 & 52 \end{array}\right) \right] $
$\PGL(2,151)$ 19A4 $19$ $22650$ $C_{152}$ 19A8 19A7 19A1 1A 19A4 $ \left[ \left(\begin{array}{rr} 21 & 119 \\ 29 & 102 \end{array}\right) \right] $
$\PGL(2,151)$ 19A5 $19$ $22650$ $C_{152}$ 19A9 19A4 19A6 1A 19A5 $ \left[ \left(\begin{array}{rr} 75 & 140 \\ 43 & 117 \end{array}\right) \right] $
$\PGL(2,151)$ 19A6 $19$ $22650$ $C_{152}$ 19A7 19A1 19A8 1A 19A6 $ \left[ \left(\begin{array}{rr} 26 & 87 \\ 58 & 37 \end{array}\right) \right] $
$\PGL(2,151)$ 19A7 $19$ $22650$ $C_{152}$ 19A5 19A2 19A3 1A 19A7 $ \left[ \left(\begin{array}{rr} 133 & 129 \\ 86 & 66 \end{array}\right) \right] $
$\PGL(2,151)$ 19A8 $19$ $22650$ $C_{152}$ 19A3 19A5 19A2 1A 19A8 $ \left[ \left(\begin{array}{rr} 34 & 10 \\ 57 & 37 \end{array}\right) \right] $
$\PGL(2,151)$ 19A9 $19$ $22650$ $C_{152}$ 19A1 19A8 19A7 1A 19A9 $ \left[ \left(\begin{array}{rr} 87 & 15 \\ 10 & 16 \end{array}\right) \right] $
$\PGL(2,151)$ 25A1 $25$ $22952$ $C_{150}$ 25A2 25A3 5A1 25A6 25A1 $ \left[ \left(\begin{array}{rr} 7 & 42 \\ 74 & 134 \end{array}\right) \right] $
$\PGL(2,151)$ 25A2 $25$ $22952$ $C_{150}$ 25A4 25A6 5A2 25A12 25A2 $ \left[ \left(\begin{array}{rr} 5 & 150 \\ 27 & 135 \end{array}\right) \right] $
$\PGL(2,151)$ 25A3 $25$ $22952$ $C_{150}$ 25A6 25A9 5A2 25A7 25A3 $ \left[ \left(\begin{array}{rr} 45 & 133 \\ 33 & 120 \end{array}\right) \right] $
$\PGL(2,151)$ 25A4 $25$ $22952$ $C_{150}$ 25A8 25A12 5A1 25A1 25A4 $ \left[ \left(\begin{array}{rr} 126 & 62 \\ 138 & 69 \end{array}\right) \right] $
$\PGL(2,151)$ 25A6 $25$ $22952$ $C_{150}$ 25A12 25A7 5A1 25A11 25A6 $ \left[ \left(\begin{array}{rr} 15 & 23 \\ 134 & 45 \end{array}\right) \right] $
$\PGL(2,151)$ 25A7 $25$ $22952$ $C_{150}$ 25A11 25A4 5A2 25A8 25A7 $ \left[ \left(\begin{array}{rr} 35 & 139 \\ 22 & 85 \end{array}\right) \right] $
$\PGL(2,151)$ 25A8 $25$ $22952$ $C_{150}$ 25A9 25A1 5A2 25A2 25A8 $ \left[ \left(\begin{array}{rr} 72 & 127 \\ 44 & 21 \end{array}\right) \right] $
$\PGL(2,151)$ 25A9 $25$ $22952$ $C_{150}$ 25A7 25A2 5A1 25A4 25A9 $ \left[ \left(\begin{array}{rr} 89 & 116 \\ 39 & 109 \end{array}\right) \right] $
$\PGL(2,151)$ 25A11 $25$ $22952$ $C_{150}$ 25A3 25A8 5A1 25A9 25A11 $ \left[ \left(\begin{array}{rr} 29 & 66 \\ 30 & 56 \end{array}\right) \right] $
$\PGL(2,151)$ 25A12 $25$ $22952$ $C_{150}$ 25A1 25A11 5A2 25A3 25A12 $ \left[ \left(\begin{array}{rr} 113 & 23 \\ 134 & 143 \end{array}\right) \right] $
$\PGL(2,151)$ 30A1 $30$ $22952$ $C_{150}$ 15A1 10A1 6A 30A11 30A1 $ \left[ \left(\begin{array}{rr} 112 & 125 \\ 98 & 19 \end{array}\right) \right] $
$\PGL(2,151)$ 30A7 $30$ $22952$ $C_{150}$ 15A7 10A3 6A 30A13 30A7 $ \left[ \left(\begin{array}{rr} 105 & 2 \\ 97 & 147 \end{array}\right) \right] $
$\PGL(2,151)$ 30A11 $30$ $22952$ $C_{150}$ 15A4 10A1 6A 30A1 30A11 $ \left[ \left(\begin{array}{rr} 101 & 98 \\ 72 & 45 \end{array}\right) \right] $
$\PGL(2,151)$ 30A13 $30$ $22952$ $C_{150}$ 15A2 10A3 6A 30A7 30A13 $ \left[ \left(\begin{array}{rr} 23 & 4 \\ 43 & 107 \end{array}\right) \right] $
$\PGL(2,151)$ 38A1 $38$ $22650$ $C_{152}$ 19A1 38A3 38A5 2A 38A1 $ \left[ \left(\begin{array}{rr} 16 & 143 \\ 45 & 74 \end{array}\right) \right] $
$\PGL(2,151)$ 38A3 $38$ $22650$ $C_{152}$ 19A3 38A9 38A15 2A 38A3 $ \left[ \left(\begin{array}{rr} 27 & 102 \\ 68 & 118 \end{array}\right) \right] $
$\PGL(2,151)$ 38A5 $38$ $22650$ $C_{152}$ 19A5 38A15 38A13 2A 38A5 $ \left[ \left(\begin{array}{rr} 79 & 138 \\ 92 & 60 \end{array}\right) \right] $
$\PGL(2,151)$ 38A7 $38$ $22650$ $C_{152}$ 19A7 38A17 38A3 2A 38A7 $ \left[ \left(\begin{array}{rr} 103 & 27 \\ 18 & 96 \end{array}\right) \right] $
$\PGL(2,151)$ 38A9 $38$ $22650$ $C_{152}$ 19A9 38A11 38A7 2A 38A9 $ \left[ \left(\begin{array}{rr} 73 & 90 \\ 60 & 100 \end{array}\right) \right] $
$\PGL(2,151)$ 38A11 $38$ $22650$ $C_{152}$ 19A8 38A5 38A17 2A 38A11 $ \left[ \left(\begin{array}{rr} 45 & 125 \\ 33 & 7 \end{array}\right) \right] $
$\PGL(2,151)$ 38A13 $38$ $22650$ $C_{152}$ 19A6 38A1 38A11 2A 38A13 $ \left[ \left(\begin{array}{rr} 49 & 64 \\ 93 & 38 \end{array}\right) \right] $
$\PGL(2,151)$ 38A15 $38$ $22650$ $C_{152}$ 19A4 38A7 38A1 2A 38A15 $ \left[ \left(\begin{array}{rr} 110 & 67 \\ 95 & 115 \end{array}\right) \right] $
$\PGL(2,151)$ 38A17 $38$ $22650$ $C_{152}$ 19A2 38A13 38A9 2A 38A17 $ \left[ \left(\begin{array}{rr} 43 & 112 \\ 125 & 137 \end{array}\right) \right] $
$\PGL(2,151)$ 50A1 $50$ $22952$ $C_{150}$ 25A1 50A3 10A1 50A19 50A1 $ \left[ \left(\begin{array}{rr} 118 & 12 \\ 129 & 68 \end{array}\right) \right] $
$\PGL(2,151)$ 50A3 $50$ $22952$ $C_{150}$ 25A3 50A9 10A3 50A7 50A3 $ \left[ \left(\begin{array}{rr} 125 & 25 \\ 80 & 46 \end{array}\right) \right] $
Next   displayed columns for results