Learn more

Refine search


Results (1-50 of 151 matches)

Next   displayed columns for results

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\GL(2,149)$.

Group Label Order Size Centralizer Powers Representative
2P 3P 5P 37P 149P
$\PGL(2,149)$ 1A $1$ $1$ $\PGL(2,149)$ 1A 1A 1A 1A 1A $ \left[ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) \right] $
$\PGL(2,149)$ 2A $2$ $11026$ $D_{150}$ 1A 2A 2A 2A 2A $ \left[ \left(\begin{array}{rr} 136 & 60 \\ 4 & 13 \end{array}\right) \right] $
$\PGL(2,149)$ 2B $2$ $11175$ $D_{148}$ 1A 2B 2B 2B 2B $ \left[ \left(\begin{array}{rr} 58 & 0 \\ 0 & 91 \end{array}\right) \right] $
$\PGL(2,149)$ 3A $3$ $22052$ $C_{150}$ 3A 1A 3A 3A 3A $ \left[ \left(\begin{array}{rr} 22 & 103 \\ 136 & 12 \end{array}\right) \right] $
$\PGL(2,149)$ 4A $4$ $22350$ $C_{148}$ 2B 4A 4A 4A 4A $ \left[ \left(\begin{array}{rr} 41 & 0 \\ 0 & 133 \end{array}\right) \right] $
$\PGL(2,149)$ 5A1 $5$ $22052$ $C_{150}$ 5A2 5A2 1A 5A2 5A1 $ \left[ \left(\begin{array}{rr} 37 & 25 \\ 101 & 23 \end{array}\right) \right] $
$\PGL(2,149)$ 5A2 $5$ $22052$ $C_{150}$ 5A1 5A1 1A 5A1 5A2 $ \left[ \left(\begin{array}{rr} 4 & 2 \\ 20 & 134 \end{array}\right) \right] $
$\PGL(2,149)$ 6A $6$ $22052$ $C_{150}$ 3A 2A 6A 6A 6A $ \left[ \left(\begin{array}{rr} 59 & 42 \\ 122 & 107 \end{array}\right) \right] $
$\PGL(2,149)$ 10A1 $10$ $22052$ $C_{150}$ 5A1 10A3 2A 10A3 10A1 $ \left[ \left(\begin{array}{rr} 17 & 119 \\ 147 & 4 \end{array}\right) \right] $
$\PGL(2,149)$ 10A3 $10$ $22052$ $C_{150}$ 5A2 10A1 2A 10A1 10A3 $ \left[ \left(\begin{array}{rr} 9 & 114 \\ 97 & 118 \end{array}\right) \right] $
$\PGL(2,149)$ 15A1 $15$ $22052$ $C_{150}$ 15A2 5A1 3A 15A7 15A1 $ \left[ \left(\begin{array}{rr} 29 & 37 \\ 72 & 50 \end{array}\right) \right] $
$\PGL(2,149)$ 15A2 $15$ $22052$ $C_{150}$ 15A4 5A2 3A 15A1 15A2 $ \left[ \left(\begin{array}{rr} 123 & 19 \\ 41 & 17 \end{array}\right) \right] $
$\PGL(2,149)$ 15A4 $15$ $22052$ $C_{150}$ 15A7 5A1 3A 15A2 15A4 $ \left[ \left(\begin{array}{rr} 105 & 66 \\ 64 & 74 \end{array}\right) \right] $
$\PGL(2,149)$ 15A7 $15$ $22052$ $C_{150}$ 15A1 5A2 3A 15A4 15A7 $ \left[ \left(\begin{array}{rr} 26 & 144 \\ 99 & 148 \end{array}\right) \right] $
$\PGL(2,149)$ 25A1 $25$ $22052$ $C_{150}$ 25A2 25A3 5A1 25A12 25A1 $ \left[ \left(\begin{array}{rr} 63 & 118 \\ 137 & 134 \end{array}\right) \right] $
$\PGL(2,149)$ 25A2 $25$ $22052$ $C_{150}$ 25A4 25A6 5A2 25A1 25A2 $ \left[ \left(\begin{array}{rr} 63 & 51 \\ 63 & 100 \end{array}\right) \right] $
$\PGL(2,149)$ 25A3 $25$ $22052$ $C_{150}$ 25A6 25A9 5A2 25A11 25A3 $ \left[ \left(\begin{array}{rr} 46 & 79 \\ 45 & 115 \end{array}\right) \right] $
$\PGL(2,149)$ 25A4 $25$ $22052$ $C_{150}$ 25A8 25A12 5A1 25A2 25A4 $ \left[ \left(\begin{array}{rr} 40 & 58 \\ 133 & 85 \end{array}\right) \right] $
$\PGL(2,149)$ 25A6 $25$ $22052$ $C_{150}$ 25A12 25A7 5A1 25A3 25A6 $ \left[ \left(\begin{array}{rr} 114 & 88 \\ 135 & 23 \end{array}\right) \right] $
$\PGL(2,149)$ 25A7 $25$ $22052$ $C_{150}$ 25A11 25A4 5A2 25A9 25A7 $ \left[ \left(\begin{array}{rr} 42 & 68 \\ 84 & 141 \end{array}\right) \right] $
$\PGL(2,149)$ 25A8 $25$ $22052$ $C_{150}$ 25A9 25A1 5A2 25A4 25A8 $ \left[ \left(\begin{array}{rr} 147 & 68 \\ 84 & 97 \end{array}\right) \right] $
$\PGL(2,149)$ 25A9 $25$ $22052$ $C_{150}$ 25A7 25A2 5A1 25A8 25A9 $ \left[ \left(\begin{array}{rr} 66 & 88 \\ 135 & 124 \end{array}\right) \right] $
$\PGL(2,149)$ 25A11 $25$ $22052$ $C_{150}$ 25A3 25A8 5A1 25A7 25A11 $ \left[ \left(\begin{array}{rr} 2 & 64 \\ 44 & 139 \end{array}\right) \right] $
$\PGL(2,149)$ 25A12 $25$ $22052$ $C_{150}$ 25A1 25A11 5A2 25A6 25A12 $ \left[ \left(\begin{array}{rr} 23 & 64 \\ 44 & 11 \end{array}\right) \right] $
$\PGL(2,149)$ 30A1 $30$ $22052$ $C_{150}$ 15A1 10A1 6A 30A7 30A1 $ \left[ \left(\begin{array}{rr} 104 & 88 \\ 135 & 13 \end{array}\right) \right] $
$\PGL(2,149)$ 30A7 $30$ $22052$ $C_{150}$ 15A7 10A3 6A 30A11 30A7 $ \left[ \left(\begin{array}{rr} 89 & 107 \\ 27 & 41 \end{array}\right) \right] $
$\PGL(2,149)$ 30A11 $30$ $22052$ $C_{150}$ 15A4 10A1 6A 30A13 30A11 $ \left[ \left(\begin{array}{rr} 146 & 65 \\ 54 & 50 \end{array}\right) \right] $
$\PGL(2,149)$ 30A13 $30$ $22052$ $C_{150}$ 15A2 10A3 6A 30A1 30A13 $ \left[ \left(\begin{array}{rr} 91 & 114 \\ 97 & 51 \end{array}\right) \right] $
$\PGL(2,149)$ 37A1 $37$ $22350$ $C_{148}$ 37A2 37A3 37A5 1A 37A1 $ \left[ \left(\begin{array}{rr} 38 & 0 \\ 0 & 74 \end{array}\right) \right] $
$\PGL(2,149)$ 37A2 $37$ $22350$ $C_{148}$ 37A4 37A6 37A10 1A 37A2 $ \left[ \left(\begin{array}{rr} 66 & 0 \\ 0 & 79 \end{array}\right) \right] $
$\PGL(2,149)$ 37A3 $37$ $22350$ $C_{148}$ 37A6 37A9 37A15 1A 37A3 $ \left[ \left(\begin{array}{rr} 113 & 0 \\ 0 & 110 \end{array}\right) \right] $
$\PGL(2,149)$ 37A4 $37$ $22350$ $C_{148}$ 37A8 37A12 37A17 1A 37A4 $ \left[ \left(\begin{array}{rr} 29 & 0 \\ 0 & 37 \end{array}\right) \right] $
$\PGL(2,149)$ 37A5 $37$ $22350$ $C_{148}$ 37A10 37A15 37A12 1A 37A5 $ \left[ \left(\begin{array}{rr} 63 & 0 \\ 0 & 80 \end{array}\right) \right] $
$\PGL(2,149)$ 37A6 $37$ $22350$ $C_{148}$ 37A12 37A18 37A7 1A 37A6 $ \left[ \left(\begin{array}{rr} 101 & 0 \\ 0 & 43 \end{array}\right) \right] $
$\PGL(2,149)$ 37A7 $37$ $22350$ $C_{148}$ 37A14 37A16 37A2 1A 37A7 $ \left[ \left(\begin{array}{rr} 83 & 0 \\ 0 & 122 \end{array}\right) \right] $
$\PGL(2,149)$ 37A8 $37$ $22350$ $C_{148}$ 37A16 37A13 37A3 1A 37A8 $ \left[ \left(\begin{array}{rr} 5 & 0 \\ 0 & 107 \end{array}\right) \right] $
$\PGL(2,149)$ 37A9 $37$ $22350$ $C_{148}$ 37A18 37A10 37A8 1A 37A9 $ \left[ \left(\begin{array}{rr} 135 & 0 \\ 0 & 11 \end{array}\right) \right] $
$\PGL(2,149)$ 37A10 $37$ $22350$ $C_{148}$ 37A17 37A7 37A13 1A 37A10 $ \left[ \left(\begin{array}{rr} 61 & 0 \\ 0 & 110 \end{array}\right) \right] $
$\PGL(2,149)$ 37A11 $37$ $22350$ $C_{148}$ 37A15 37A4 37A18 1A 37A11 $ \left[ \left(\begin{array}{rr} 14 & 0 \\ 0 & 111 \end{array}\right) \right] $
$\PGL(2,149)$ 37A12 $37$ $22350$ $C_{148}$ 37A13 37A1 37A14 1A 37A12 $ \left[ \left(\begin{array}{rr} 35 & 0 \\ 0 & 113 \end{array}\right) \right] $
$\PGL(2,149)$ 37A13 $37$ $22350$ $C_{148}$ 37A11 37A2 37A9 1A 37A13 $ \left[ \left(\begin{array}{rr} 85 & 0 \\ 0 & 37 \end{array}\right) \right] $
$\PGL(2,149)$ 37A14 $37$ $22350$ $C_{148}$ 37A9 37A5 37A4 1A 37A14 $ \left[ \left(\begin{array}{rr} 75 & 0 \\ 0 & 136 \end{array}\right) \right] $
$\PGL(2,149)$ 37A15 $37$ $22350$ $C_{148}$ 37A7 37A8 37A1 1A 37A15 $ \left[ \left(\begin{array}{rr} 75 & 0 \\ 0 & 108 \end{array}\right) \right] $
$\PGL(2,149)$ 37A16 $37$ $22350$ $C_{148}$ 37A5 37A11 37A6 1A 37A16 $ \left[ \left(\begin{array}{rr} 44 & 0 \\ 0 & 71 \end{array}\right) \right] $
$\PGL(2,149)$ 37A17 $37$ $22350$ $C_{148}$ 37A3 37A14 37A11 1A 37A17 $ \left[ \left(\begin{array}{rr} 100 & 0 \\ 0 & 64 \end{array}\right) \right] $
$\PGL(2,149)$ 37A18 $37$ $22350$ $C_{148}$ 37A1 37A17 37A16 1A 37A18 $ \left[ \left(\begin{array}{rr} 42 & 0 \\ 0 & 143 \end{array}\right) \right] $
$\PGL(2,149)$ 50A1 $50$ $22052$ $C_{150}$ 25A1 50A3 10A1 50A13 50A1 $ \left[ \left(\begin{array}{rr} 147 & 32 \\ 22 & 141 \end{array}\right) \right] $
$\PGL(2,149)$ 50A3 $50$ $22052$ $C_{150}$ 25A3 50A9 10A3 50A11 50A3 $ \left[ \left(\begin{array}{rr} 105 & 51 \\ 63 & 142 \end{array}\right) \right] $
$\PGL(2,149)$ 50A7 $50$ $22052$ $C_{150}$ 25A7 50A21 10A3 50A9 50A7 $ \left[ \left(\begin{array}{rr} 71 & 27 \\ 121 & 38 \end{array}\right) \right] $
$\PGL(2,149)$ 50A9 $50$ $22052$ $C_{150}$ 25A9 50A23 10A1 50A17 50A9 $ \left[ \left(\begin{array}{rr} 87 & 17 \\ 21 & 0 \end{array}\right) \right] $
Next   displayed columns for results