Elements of the group are displayed as permutations of degree 15.
| Group |
Label |
Order |
Size |
Centralizer |
Powers |
Representative |
| 2P |
3P |
5P |
11P |
| $C_2^2\times \PSL(2,11)$ |
1A |
$1$ |
$1$ |
$C_2^2\times \PSL(2,11)$ |
1A |
1A |
1A |
1A |
$()$ |
| $C_2^2\times \PSL(2,11)$ |
2A |
$2$ |
$1$ |
$C_2^2\times \PSL(2,11)$ |
1A |
2A |
2A |
2A |
$(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
2B |
$2$ |
$1$ |
$C_2^2\times \PSL(2,11)$ |
1A |
2B |
2B |
2B |
$(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
2C |
$2$ |
$1$ |
$C_2^2\times \PSL(2,11)$ |
1A |
2C |
2C |
2C |
$(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
2D |
$2$ |
$55$ |
$C_2^2\times D_6$ |
1A |
2D |
2D |
2D |
$(1,2)(3,9)(5,7)(6,11)$ |
| $C_2^2\times \PSL(2,11)$ |
2E |
$2$ |
$55$ |
$C_2^2\times D_6$ |
1A |
2E |
2E |
2E |
$(1,3)(2,11)(5,8)(6,9)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
2F |
$2$ |
$55$ |
$C_2^2\times D_6$ |
1A |
2F |
2F |
2F |
$(1,5)(3,11)(4,9)(7,10)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
2G |
$2$ |
$55$ |
$C_2^2\times D_6$ |
1A |
2G |
2G |
2G |
$(1,10)(2,5)(3,6)(4,11)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
3A |
$3$ |
$110$ |
$C_2^2\times C_6$ |
3A |
1A |
3A |
3A |
$(1,5,3)(2,7,9)(4,8,10)$ |
| $C_2^2\times \PSL(2,11)$ |
5A1 |
$5$ |
$132$ |
$C_2\times C_{10}$ |
5A2 |
5A2 |
1A |
5A1 |
$(1,7,2,10,5)(3,8,11,4,9)$ |
| $C_2^2\times \PSL(2,11)$ |
5A2 |
$5$ |
$132$ |
$C_2\times C_{10}$ |
5A1 |
5A1 |
1A |
5A2 |
$(1,2,5,7,10)(3,11,9,8,4)$ |
| $C_2^2\times \PSL(2,11)$ |
6A |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2D |
6A |
6A |
$(1,9,5,2,3,7)(4,10,8)(6,11)$ |
| $C_2^2\times \PSL(2,11)$ |
6B |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2E |
6B |
6B |
$(1,3)(2,5,9,11,8,6)(4,10,7)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
6C |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2F |
6C |
6C |
$(1,7,11,5,10,3)(2,8,6)(4,9)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
6D |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2C |
6D |
6D |
$(2,5,10)(3,11,9)(4,8,6)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
6E |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2B |
6E |
6E |
$(1,10,3)(4,8,5)(6,9,7)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
6F |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2A |
6F |
6F |
$(1,5,6)(2,9,4)(7,10,8)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
6G |
$6$ |
$110$ |
$C_2^2\times C_6$ |
3A |
2G |
6G |
6G |
$(1,4,5,10,11,2)(3,6)(7,9,8)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
10A1 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A1 |
10A3 |
2A |
10A1 |
$(1,10,7,5,2)(3,4,8,9,11)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
10A3 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A2 |
10A1 |
2A |
10A3 |
$(1,5,10,2,7)(3,9,4,11,8)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
10B1 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A2 |
10B3 |
2C |
10B1 |
$(1,2,9,6,5)(3,7,8,11,10)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
10B3 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A1 |
10B1 |
2C |
10B3 |
$(1,6,2,5,9)(3,11,7,10,8)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
10C1 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A2 |
10C3 |
2B |
10C1 |
$(1,5,7,9,11)(2,4,6,10,3)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
10C3 |
$10$ |
$132$ |
$C_2\times C_{10}$ |
5A1 |
10C1 |
2B |
10C3 |
$(1,9,5,11,7)(2,10,4,3,6)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
11A1 |
$11$ |
$60$ |
$C_2\times C_{22}$ |
11A-1 |
11A1 |
11A1 |
1A |
$(1,2,8,5,9,4,10,3,11,6,7)$ |
| $C_2^2\times \PSL(2,11)$ |
11A-1 |
$11$ |
$60$ |
$C_2\times C_{22}$ |
11A1 |
11A-1 |
11A-1 |
1A |
$(1,7,6,11,3,10,4,9,5,8,2)$ |
| $C_2^2\times \PSL(2,11)$ |
22A1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A1 |
22A1 |
22A1 |
2B |
$(1,10,2,3,8,11,5,6,9,7,4)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
22A-1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A-1 |
22A-1 |
22A-1 |
2B |
$(1,4,7,9,6,5,11,8,3,2,10)(12,15)(13,14)$ |
| $C_2^2\times \PSL(2,11)$ |
22B1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A1 |
22B1 |
22B1 |
2A |
$(1,9,8,6,7,11,3,5,4,2,10)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
22B-1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A-1 |
22B-1 |
22B-1 |
2A |
$(1,10,2,4,5,3,11,7,6,8,9)(12,13)(14,15)$ |
| $C_2^2\times \PSL(2,11)$ |
22C1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A1 |
22C1 |
22C1 |
2C |
$(1,11,9,2,8,5,10,7,3,4,6)(12,14)(13,15)$ |
| $C_2^2\times \PSL(2,11)$ |
22C-1 |
$22$ |
$60$ |
$C_2\times C_{22}$ |
11A-1 |
22C-1 |
22C-1 |
2C |
$(1,6,4,3,7,10,5,8,2,9,11)(12,14)(13,15)$ |