Refine search
Elements of the group are displayed as matrices in $\GL_{2}(\Z/{32}\Z)$.
| Group | Label | Order | Size | Centralizer | Powers | Representative |
|---|---|---|---|---|---|---|
| 2P | ||||||
| $C_8^2:C_2^2$ | 1A | $1$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2A | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2B | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 31 & 16 \\ 0 & 31 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2C | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2D | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 15 & 16 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2E | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2F | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2G | $2$ | $1$ | $C_8^2:C_2^2$ | 1A | $ \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2H | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 29 & 15 \\ 8 & 3 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2I | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 25 & 31 \\ 16 & 7 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2J | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 31 & 29 \\ 0 & 1 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2K | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 19 & 1 \\ 24 & 13 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2L | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 19 & 13 \\ 24 & 13 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2M | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 23 & 17 \\ 16 & 9 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2N | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 17 & 19 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 2O | $2$ | $16$ | $C_2^4$ | 1A | $ \left(\begin{array}{rr} 29 & 3 \\ 8 & 3 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4A | $4$ | $2$ | $C_2\times C_8^2$ | 2E | $ \left(\begin{array}{rr} 23 & 8 \\ 16 & 7 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4B | $4$ | $2$ | $C_2\times C_8^2$ | 2F | $ \left(\begin{array}{rr} 7 & 16 \\ 16 & 23 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4C | $4$ | $2$ | $C_2\times C_8^2$ | 2E | $ \left(\begin{array}{rr} 7 & 8 \\ 16 & 23 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4D | $4$ | $2$ | $C_2\times C_8^2$ | 2F | $ \left(\begin{array}{rr} 23 & 0 \\ 16 & 7 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4E | $4$ | $2$ | $C_2\times C_8^2$ | 2G | $ \left(\begin{array}{rr} 15 & 24 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4F | $4$ | $2$ | $C_2\times C_8^2$ | 2G | $ \left(\begin{array}{rr} 31 & 8 \\ 0 & 31 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4G | $4$ | $2$ | $C_2\times C_8^2$ | 2E | $ \left(\begin{array}{rr} 25 & 24 \\ 16 & 9 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4H | $4$ | $2$ | $C_2\times C_8^2$ | 2F | $ \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4I | $4$ | $2$ | $C_2\times C_8^2$ | 2E | $ \left(\begin{array}{rr} 9 & 24 \\ 16 & 25 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4J | $4$ | $2$ | $C_2\times C_8^2$ | 2F | $ \left(\begin{array}{rr} 25 & 0 \\ 16 & 9 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4K | $4$ | $2$ | $C_2\times C_8^2$ | 2G | $ \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 4L | $4$ | $2$ | $C_2\times C_8^2$ | 2G | $ \left(\begin{array}{rr} 17 & 24 \\ 0 & 17 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8A1 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 5 & 12 \\ 24 & 13 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8A3 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 21 & 28 \\ 24 & 29 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8B1 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 3 & 24 \\ 24 & 11 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8B3 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 19 & 24 \\ 24 & 27 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8C1 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 21 & 12 \\ 24 & 29 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8C3 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 5 & 28 \\ 24 & 13 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8D1 | $8$ | $2$ | $C_2\times C_8^2$ | 4I | $ \left(\begin{array}{rr} 13 & 28 \\ 8 & 5 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8D3 | $8$ | $2$ | $C_2\times C_8^2$ | 4I | $ \left(\begin{array}{rr} 29 & 12 \\ 8 & 21 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8E1 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 19 & 8 \\ 24 & 27 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8E3 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 3 & 8 \\ 24 & 11 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8F1 | $8$ | $2$ | $C_2\times C_8^2$ | 4J | $ \left(\begin{array}{rr} 11 & 0 \\ 8 & 3 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8F3 | $8$ | $2$ | $C_2\times C_8^2$ | 4J | $ \left(\begin{array}{rr} 27 & 0 \\ 8 & 19 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8G1 | $8$ | $2$ | $C_2\times C_8^2$ | 4K | $ \left(\begin{array}{rr} 15 & 28 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8G3 | $8$ | $2$ | $C_2\times C_8^2$ | 4K | $ \left(\begin{array}{rr} 15 & 12 \\ 0 & 15 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8H1 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 11 & 20 \\ 8 & 3 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8H3 | $8$ | $2$ | $C_2\times C_8^2$ | 4G | $ \left(\begin{array}{rr} 27 & 4 \\ 8 & 19 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8I1 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8I3 | $8$ | $2$ | $C_2\times C_8^2$ | 4H | $ \left(\begin{array}{rr} 29 & 8 \\ 8 & 21 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8J1 | $8$ | $2$ | $C_2\times C_8^2$ | 4I | $ \left(\begin{array}{rr} 5 & 20 \\ 24 & 13 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8J3 | $8$ | $2$ | $C_2\times C_8^2$ | 4I | $ \left(\begin{array}{rr} 29 & 28 \\ 8 & 21 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8K1 | $8$ | $2$ | $C_2\times C_8^2$ | 4J | $ \left(\begin{array}{rr} 27 & 16 \\ 8 & 19 \end{array}\right) $ |
| $C_8^2:C_2^2$ | 8K3 | $8$ | $2$ | $C_2\times C_8^2$ | 4J | $ \left(\begin{array}{rr} 3 & 16 \\ 24 & 11 \end{array}\right) $ |