Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{32}\Z)$.

Group Label Order Size Centralizer Powers Representative
2P
$C_8^2:C_2^2$ 1A $1$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $
$C_8^2:C_2^2$ 2A $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 2B $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 31 & 16 \\ 0 & 31 \end{array}\right) $
$C_8^2:C_2^2$ 2C $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right) $
$C_8^2:C_2^2$ 2D $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 15 & 16 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 2E $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right) $
$C_8^2:C_2^2$ 2F $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right) $
$C_8^2:C_2^2$ 2G $2$ $1$ $C_8^2:C_2^2$ 1A $ \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right) $
$C_8^2:C_2^2$ 2H $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 29 & 15 \\ 8 & 3 \end{array}\right) $
$C_8^2:C_2^2$ 2I $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 25 & 31 \\ 16 & 7 \end{array}\right) $
$C_8^2:C_2^2$ 2J $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 31 & 29 \\ 0 & 1 \end{array}\right) $
$C_8^2:C_2^2$ 2K $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 19 & 1 \\ 24 & 13 \end{array}\right) $
$C_8^2:C_2^2$ 2L $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 19 & 13 \\ 24 & 13 \end{array}\right) $
$C_8^2:C_2^2$ 2M $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 23 & 17 \\ 16 & 9 \end{array}\right) $
$C_8^2:C_2^2$ 2N $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 17 & 19 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 2O $2$ $16$ $C_2^4$ 1A $ \left(\begin{array}{rr} 29 & 3 \\ 8 & 3 \end{array}\right) $
$C_8^2:C_2^2$ 4A $4$ $2$ $C_2\times C_8^2$ 2E $ \left(\begin{array}{rr} 23 & 8 \\ 16 & 7 \end{array}\right) $
$C_8^2:C_2^2$ 4B $4$ $2$ $C_2\times C_8^2$ 2F $ \left(\begin{array}{rr} 7 & 16 \\ 16 & 23 \end{array}\right) $
$C_8^2:C_2^2$ 4C $4$ $2$ $C_2\times C_8^2$ 2E $ \left(\begin{array}{rr} 7 & 8 \\ 16 & 23 \end{array}\right) $
$C_8^2:C_2^2$ 4D $4$ $2$ $C_2\times C_8^2$ 2F $ \left(\begin{array}{rr} 23 & 0 \\ 16 & 7 \end{array}\right) $
$C_8^2:C_2^2$ 4E $4$ $2$ $C_2\times C_8^2$ 2G $ \left(\begin{array}{rr} 15 & 24 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 4F $4$ $2$ $C_2\times C_8^2$ 2G $ \left(\begin{array}{rr} 31 & 8 \\ 0 & 31 \end{array}\right) $
$C_8^2:C_2^2$ 4G $4$ $2$ $C_2\times C_8^2$ 2E $ \left(\begin{array}{rr} 25 & 24 \\ 16 & 9 \end{array}\right) $
$C_8^2:C_2^2$ 4H $4$ $2$ $C_2\times C_8^2$ 2F $ \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right) $
$C_8^2:C_2^2$ 4I $4$ $2$ $C_2\times C_8^2$ 2E $ \left(\begin{array}{rr} 9 & 24 \\ 16 & 25 \end{array}\right) $
$C_8^2:C_2^2$ 4J $4$ $2$ $C_2\times C_8^2$ 2F $ \left(\begin{array}{rr} 25 & 0 \\ 16 & 9 \end{array}\right) $
$C_8^2:C_2^2$ 4K $4$ $2$ $C_2\times C_8^2$ 2G $ \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right) $
$C_8^2:C_2^2$ 4L $4$ $2$ $C_2\times C_8^2$ 2G $ \left(\begin{array}{rr} 17 & 24 \\ 0 & 17 \end{array}\right) $
$C_8^2:C_2^2$ 8A1 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 5 & 12 \\ 24 & 13 \end{array}\right) $
$C_8^2:C_2^2$ 8A3 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 21 & 28 \\ 24 & 29 \end{array}\right) $
$C_8^2:C_2^2$ 8B1 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 3 & 24 \\ 24 & 11 \end{array}\right) $
$C_8^2:C_2^2$ 8B3 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 19 & 24 \\ 24 & 27 \end{array}\right) $
$C_8^2:C_2^2$ 8C1 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 21 & 12 \\ 24 & 29 \end{array}\right) $
$C_8^2:C_2^2$ 8C3 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 5 & 28 \\ 24 & 13 \end{array}\right) $
$C_8^2:C_2^2$ 8D1 $8$ $2$ $C_2\times C_8^2$ 4I $ \left(\begin{array}{rr} 13 & 28 \\ 8 & 5 \end{array}\right) $
$C_8^2:C_2^2$ 8D3 $8$ $2$ $C_2\times C_8^2$ 4I $ \left(\begin{array}{rr} 29 & 12 \\ 8 & 21 \end{array}\right) $
$C_8^2:C_2^2$ 8E1 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 19 & 8 \\ 24 & 27 \end{array}\right) $
$C_8^2:C_2^2$ 8E3 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 3 & 8 \\ 24 & 11 \end{array}\right) $
$C_8^2:C_2^2$ 8F1 $8$ $2$ $C_2\times C_8^2$ 4J $ \left(\begin{array}{rr} 11 & 0 \\ 8 & 3 \end{array}\right) $
$C_8^2:C_2^2$ 8F3 $8$ $2$ $C_2\times C_8^2$ 4J $ \left(\begin{array}{rr} 27 & 0 \\ 8 & 19 \end{array}\right) $
$C_8^2:C_2^2$ 8G1 $8$ $2$ $C_2\times C_8^2$ 4K $ \left(\begin{array}{rr} 15 & 28 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 8G3 $8$ $2$ $C_2\times C_8^2$ 4K $ \left(\begin{array}{rr} 15 & 12 \\ 0 & 15 \end{array}\right) $
$C_8^2:C_2^2$ 8H1 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 11 & 20 \\ 8 & 3 \end{array}\right) $
$C_8^2:C_2^2$ 8H3 $8$ $2$ $C_2\times C_8^2$ 4G $ \left(\begin{array}{rr} 27 & 4 \\ 8 & 19 \end{array}\right) $
$C_8^2:C_2^2$ 8I1 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right) $
$C_8^2:C_2^2$ 8I3 $8$ $2$ $C_2\times C_8^2$ 4H $ \left(\begin{array}{rr} 29 & 8 \\ 8 & 21 \end{array}\right) $
$C_8^2:C_2^2$ 8J1 $8$ $2$ $C_2\times C_8^2$ 4I $ \left(\begin{array}{rr} 5 & 20 \\ 24 & 13 \end{array}\right) $
$C_8^2:C_2^2$ 8J3 $8$ $2$ $C_2\times C_8^2$ 4I $ \left(\begin{array}{rr} 29 & 28 \\ 8 & 21 \end{array}\right) $
$C_8^2:C_2^2$ 8K1 $8$ $2$ $C_2\times C_8^2$ 4J $ \left(\begin{array}{rr} 27 & 16 \\ 8 & 19 \end{array}\right) $
$C_8^2:C_2^2$ 8K3 $8$ $2$ $C_2\times C_8^2$ 4J $ \left(\begin{array}{rr} 3 & 16 \\ 24 & 11 \end{array}\right) $
Next   displayed columns for results