Refine search
Results (43 matches)
Download displayed columns for resultsElements of the group are displayed as permutations of degree 12.
Group | Label | Order | Size | Centralizer | Powers | Representative | ||||
---|---|---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | 7P | 11P | ||||||
$A_{12}$ | 1A | $1$ | $1$ | not computed | 1A | 1A | 1A | 1A | 1A | $()$ |
$A_{12}$ | 2A | $2$ | $1485$ | not computed | 1A | 2A | 2A | 2A | 2A | $(2,8)(7,12)$ |
$A_{12}$ | 2B | $2$ | $10395$ | not computed | 1A | 2B | 2B | 2B | 2B | $(1,3)(2,8)(4,9)(5,10)(6,11)(7,12)$ |
$A_{12}$ | 2C | $2$ | $51975$ | not computed | 1A | 2C | 2C | 2C | 2C | $(1,9)(3,6)(5,10)(7,8)$ |
$A_{12}$ | 3A | $3$ | $440$ | not computed | 3A | 1A | 3A | 3A | 3A | $(1,7,8)$ |
$A_{12}$ | 3B | $3$ | $36960$ | not computed | 3B | 1A | 3B | 3B | 3B | $(2,5,6)(3,7,9)$ |
$A_{12}$ | 3C | $3$ | $246400$ | not computed | 3C | 1A | 3C | 3C | 3C | $(1,11,9)(2,6,4)(3,12,8)(5,10,7)$ |
$A_{12}$ | 3D | $3$ | $492800$ | not computed | 3D | 1A | 3D | 3D | 3D | $(2,7,5)(3,6,10)(9,11,12)$ |
$A_{12}$ | 4A | $4$ | $83160$ | not computed | 2A | 4A | 4A | 4A | 4A | $(1,11)(2,10,8,5)$ |
$A_{12}$ | 4B | $4$ | $623700$ | not computed | 2C | 4B | 4B | 4B | 4B | $(2,6,11,8)(3,5,4,12)$ |
$A_{12}$ | 4C | $4$ | $1247400$ | not computed | 2A | 4C | 4C | 4C | 4C | $(1,7)(2,6)(3,8)(4,11,9,10)$ |
$A_{12}$ | 4D | $4$ | $1871100$ | not computed | 2C | 4D | 4D | 4D | 4D | $(1,3,9,6)(2,11)(4,12)(5,8,10,7)$ |
$A_{12}$ | 5A | $5$ | $19008$ | not computed | 5A | 5A | 1A | 5A | 5A | $(3,6,12,8,4)$ |
$A_{12}$ | 5B | $5$ | $4790016$ | not computed | 5B | 5B | 1A | 5B | 5B | $(2,9,5,11,7)(4,10,6,12,8)$ |
$A_{12}$ | 6A | $6$ | $166320$ | not computed | 3A | 2A | 6A | 6A | 6A | $(1,5)(4,12)(6,7,10)$ |
$A_{12}$ | 6B | $6$ | $415800$ | not computed | 3A | 2C | 6B | 6B | 6B | $(1,4)(2,8)(3,9)(5,6,7)(10,12)$ |
$A_{12}$ | 6C | $6$ | $1663200$ | not computed | 3B | 2A | 6C | 6C | 6C | $(1,2,10)(3,5,4)(8,9)(11,12)$ |
$A_{12}$ | 6D | $6$ | $1663200$ | not computed | 3B | 2B | 6D | 6D | 6D | $(1,4,11,3,12,2)(5,6)(7,10)(8,9)$ |
$A_{12}$ | 6E | $6$ | $1663200$ | not computed | 3B | 2C | 6E | 6E | 6E | $(1,10,2,3,5,8)(4,6)$ |
$A_{12}$ | 6F | $6$ | $6652800$ | not computed | 3C | 2B | 6F | 6F | 6F | $(1,7,11,5,9,10)(2,3,6,12,4,8)$ |
$A_{12}$ | 6G | $6$ | $13305600$ | not computed | 3D | 2C | 6G | 6G | 6G | $(1,9,7,8,3,4)(2,12,10)(6,11)$ |
$A_{12}$ | 7A | $7$ | $570240$ | not computed | 7A | 7A | 7A | 1A | 7A | $(1,9,2,10,7,11,5)$ |
$A_{12}$ | 8A | $8$ | $14968800$ | not computed | 4D | 8A | 8A | 8A | 8A | $(1,8,3,10,9,7,6,5)(2,12,11,4)$ |
$A_{12}$ | 8B | $8$ | $14968800$ | not computed | 4B | 8B | 8B | 8B | 8B | $(1,9)(2,12,6,3,11,5,8,4)$ |
$A_{12}$ | 9A | $9$ | $8870400$ | not computed | 9A | 3D | 9A | 9A | 9A | $(2,4,11,8,5,9,12,10,3)$ |
$A_{12}$ | 9B1 | $9$ | $8870400$ | not computed | 9B-1 | 3D | 9B-1 | 9B1 | 9B-1 | $(1,4,8)(2,12,6,7,9,10,5,11,3)$ |
$A_{12}$ | 9B-1 | $9$ | $8870400$ | not computed | 9B1 | 3D | 9B1 | 9B-1 | 9B1 | $(1,8,4)(2,3,11,5,10,9,7,6,12)$ |
$A_{12}$ | 10A | $10$ | $1995840$ | not computed | 5A | 10A | 2A | 10A | 10A | $(2,8)(4,7,6,12,9)(5,10)$ |
$A_{12}$ | 10B | $10$ | $23950080$ | not computed | 5B | 10B | 2B | 10B | 10B | $(1,3)(2,6,9,12,5,8,11,4,7,10)$ |
$A_{12}$ | 11A1 | $11$ | $21772800$ | not computed | 11A-1 | 11A1 | 11A1 | 11A-1 | 1A | $(1,9,4,3,8,2,5,11,10,6,12)$ |
$A_{12}$ | 11A-1 | $11$ | $21772800$ | not computed | 11A1 | 11A-1 | 11A-1 | 11A1 | 1A | $(1,12,6,10,11,5,2,8,3,4,9)$ |
$A_{12}$ | 12A | $12$ | $3326400$ | not computed | 6C | 4A | 12A | 12A | 12A | $(1,10,2)(3,4,5)(6,7)(8,12,9,11)$ |
$A_{12}$ | 12B | $12$ | $3326400$ | not computed | 6A | 4A | 12B | 12B | 12B | $(1,12,5,4)(3,8)(6,10,7)$ |
$A_{12}$ | 12C | $12$ | $4989600$ | not computed | 6B | 4B | 12C | 12C | 12C | $(1,3,4,9)(2,12,8,10)(5,7,6)$ |
$A_{12}$ | 12D | $12$ | $9979200$ | not computed | 6C | 4C | 12D | 12D | 12D | $(1,8,2,7,3,6)(4,10,9,11)$ |
$A_{12}$ | 14A | $14$ | $8553600$ | not computed | 7A | 14A | 14A | 2A | 14A | $(1,9,5,11,4,10,3)(2,8)(7,12)$ |
$A_{12}$ | 15A | $15$ | $1330560$ | not computed | 15A | 5A | 3A | 15A | 15A | $(1,12,5)(2,4,10,7,6)$ |
$A_{12}$ | 15B | $15$ | $5322240$ | not computed | 15B | 5A | 3B | 15B | 15B | $(2,6,5)(3,9,7)(4,12,11,10,8)$ |
$A_{12}$ | 20A | $20$ | $11975040$ | not computed | 10A | 20A | 4A | 20A | 20A | $(1,11)(2,10,8,5)(4,12,7,9,6)$ |
$A_{12}$ | 21A | $21$ | $11404800$ | not computed | 21A | 7A | 21A | 3A | 21A | $(1,7,8)(2,3,12,6,9,10,4)$ |
$A_{12}$ | 30A | $30$ | $3991680$ | not computed | 15A | 10A | 6A | 30A | 30A | $(1,5,12)(2,7,4,6,10)(3,8)(9,11)$ |
$A_{12}$ | 35A1 | $35$ | $6842880$ | not computed | 35A-1 | 35A1 | 7A | 5A | 35A1 | $(1,10,5,2,11,9,7)(3,8,6,4,12)$ |
$A_{12}$ | 35A-1 | $35$ | $6842880$ | not computed | 35A1 | 35A-1 | 7A | 5A | 35A-1 | $(1,7,9,11,2,5,10)(3,12,4,6,8)$ |