Refine search
Results (27 matches)
Download displayed columns for resultsElements of the group are displayed as matrices in $\GL_{2}(\Z/{9}\Z)$.
| Group | Label | Order | Size | Centralizer | Powers | Representative | |
|---|---|---|---|---|---|---|---|
| 2P | 3P | ||||||
| $C_3^2:D_{12}$ | 1A | $1$ | $1$ | $C_3^2:D_{12}$ | 1A | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 2A | $2$ | $1$ | $C_3^2:D_{12}$ | 1A | 2A | $ \left(\begin{array}{rr} 8 & 0 \\ 0 & 8 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 2B | $2$ | $18$ | $C_2\times C_6$ | 1A | 2B | $ \left(\begin{array}{rr} 2 & 6 \\ 1 & 7 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 2C | $2$ | $18$ | $C_2\times C_6$ | 1A | 2C | $ \left(\begin{array}{rr} 1 & 8 \\ 0 & 8 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3A | $3$ | $2$ | $C_3^2:D_6$ | 3A | 1A | $ \left(\begin{array}{rr} 4 & 0 \\ 6 & 7 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3B | $3$ | $2$ | $C_3^2:D_6$ | 3B | 1A | $ \left(\begin{array}{rr} 4 & 6 \\ 0 & 7 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3C | $3$ | $2$ | $C_3^2:C_{12}$ | 3C | 1A | $ \left(\begin{array}{rr} 7 & 3 \\ 3 & 4 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3D | $3$ | $4$ | $C_3^2\times C_6$ | 3D | 1A | $ \left(\begin{array}{rr} 7 & 6 \\ 3 & 4 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3E | $3$ | $4$ | $C_3^2\times C_6$ | 3E | 1A | $ \left(\begin{array}{rr} 7 & 3 \\ 6 & 4 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3F | $3$ | $4$ | $C_3^2\times C_6$ | 3F | 1A | $ \left(\begin{array}{rr} 7 & 6 \\ 6 & 4 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3G1 | $3$ | $4$ | $C_3^2\times C_6$ | 3G-1 | 1A | $ \left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 3G-1 | $3$ | $4$ | $C_3^2\times C_6$ | 3G1 | 1A | $ \left(\begin{array}{rr} 1 & 6 \\ 6 & 1 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 4A | $4$ | $18$ | $C_{12}$ | 2A | 4A | $ \left(\begin{array}{rr} 2 & 4 \\ 1 & 7 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6A | $6$ | $2$ | $C_3^2:D_6$ | 3A | 2A | $ \left(\begin{array}{rr} 2 & 0 \\ 6 & 5 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6B | $6$ | $2$ | $C_3^2:D_6$ | 3B | 2A | $ \left(\begin{array}{rr} 2 & 6 \\ 0 & 5 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6C | $6$ | $2$ | $C_3^2:C_{12}$ | 3C | 2A | $ \left(\begin{array}{rr} 5 & 3 \\ 3 & 2 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6D | $6$ | $4$ | $C_3^2\times C_6$ | 3D | 2A | $ \left(\begin{array}{rr} 5 & 6 \\ 3 & 2 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6E | $6$ | $4$ | $C_3^2\times C_6$ | 3E | 2A | $ \left(\begin{array}{rr} 5 & 3 \\ 6 & 2 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6F | $6$ | $4$ | $C_3^2\times C_6$ | 3F | 2A | $ \left(\begin{array}{rr} 5 & 6 \\ 6 & 2 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6G1 | $6$ | $4$ | $C_3^2\times C_6$ | 3G1 | 2A | $ \left(\begin{array}{rr} 8 & 3 \\ 3 & 8 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6G-1 | $6$ | $4$ | $C_3^2\times C_6$ | 3G-1 | 2A | $ \left(\begin{array}{rr} 2 & 3 \\ 0 & 5 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6H1 | $6$ | $18$ | $C_2\times C_6$ | 3A | 2B | $ \left(\begin{array}{rr} 8 & 6 \\ 1 & 4 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6H-1 | $6$ | $18$ | $C_2\times C_6$ | 3A | 2B | $ \left(\begin{array}{rr} 5 & 6 \\ 1 & 1 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6I1 | $6$ | $18$ | $C_2\times C_6$ | 3B | 2C | $ \left(\begin{array}{rr} 7 & 8 \\ 0 & 5 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 6I-1 | $6$ | $18$ | $C_2\times C_6$ | 3B | 2C | $ \left(\begin{array}{rr} 4 & 8 \\ 0 & 2 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 12A1 | $12$ | $18$ | $C_{12}$ | 6C | 4A | $ \left(\begin{array}{rr} 1 & 5 \\ 8 & 5 \end{array}\right) $ | 
| $C_3^2:D_{12}$ | 12A5 | $12$ | $18$ | $C_{12}$ | 6C | 4A | $ \left(\begin{array}{rr} 4 & 5 \\ 8 & 8 \end{array}\right) $ |