Learn more

Refine search


Results (1-50 of 72 matches)

Next   displayed columns for results
Label Degree Type Faithful Field of Traces $\Q$-character Group Image Image Order Kernel Kernel Order Center
192.658.1a $1$ R \(\Q\) 192.658.1a $C_2\times C_{12}.D_4$ $C_1$ $1$ 1.a1.a1 $192$ 1.a1.a1
192.658.1b $1$ R \(\Q\) 192.658.1b $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.d1.d1 $96$ 1.a1.a1
192.658.1c $1$ R \(\Q\) 192.658.1c $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.d1.c1 $96$ 1.a1.a1
192.658.1d $1$ R \(\Q\) 192.658.1d $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.d1.b1 $96$ 1.a1.a1
192.658.1e $1$ R \(\Q\) 192.658.1e $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.d1.a1 $96$ 1.a1.a1
192.658.1f $1$ R \(\Q\) 192.658.1f $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.c1.a1 $96$ 1.a1.a1
192.658.1g $1$ R \(\Q\) 192.658.1g $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.b1.a1 $96$ 1.a1.a1
192.658.1h $1$ R \(\Q\) 192.658.1h $C_2\times C_{12}.D_4$ $C_2$ $2$ 2.a1.a1 $96$ 1.a1.a1
192.658.1i1 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1i $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.g1.a1 $48$ 1.a1.a1
192.658.1i2 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1i $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.g1.a1 $48$ 1.a1.a1
192.658.1j1 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1j $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.g1.b1 $48$ 1.a1.a1
192.658.1j2 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1j $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.g1.b1 $48$ 1.a1.a1
192.658.1k1 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1k $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.b1.a1 $48$ 1.a1.a1
192.658.1k2 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1k $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.b1.a1 $48$ 1.a1.a1
192.658.1l1 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1l $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.c1.a1 $48$ 1.a1.a1
192.658.1l2 $1$ C \(\Q(\sqrt{-1}) \) 192.658.1l $C_2\times C_{12}.D_4$ $C_4$ $4$ 4.c1.a1 $48$ 1.a1.a1
192.658.1m1 $1$ C \(\Q(\zeta_{8})\) 192.658.1m $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.a1 $24$ 1.a1.a1
192.658.1m2 $1$ C \(\Q(\zeta_{8})\) 192.658.1m $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.a1 $24$ 1.a1.a1
192.658.1m3 $1$ C \(\Q(\zeta_{8})\) 192.658.1m $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.a1 $24$ 1.a1.a1
192.658.1m4 $1$ C \(\Q(\zeta_{8})\) 192.658.1m $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.a1 $24$ 1.a1.a1
192.658.1n1 $1$ C \(\Q(\zeta_{8})\) 192.658.1n $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.b1 $24$ 1.a1.a1
192.658.1n2 $1$ C \(\Q(\zeta_{8})\) 192.658.1n $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.b1 $24$ 1.a1.a1
192.658.1n3 $1$ C \(\Q(\zeta_{8})\) 192.658.1n $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.b1 $24$ 1.a1.a1
192.658.1n4 $1$ C \(\Q(\zeta_{8})\) 192.658.1n $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.b1 $24$ 1.a1.a1
192.658.1o1 $1$ C \(\Q(\zeta_{8})\) 192.658.1o $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.d1 $24$ 1.a1.a1
192.658.1o2 $1$ C \(\Q(\zeta_{8})\) 192.658.1o $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.d1 $24$ 1.a1.a1
192.658.1o3 $1$ C \(\Q(\zeta_{8})\) 192.658.1o $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.d1 $24$ 1.a1.a1
192.658.1o4 $1$ C \(\Q(\zeta_{8})\) 192.658.1o $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.d1 $24$ 1.a1.a1
192.658.1p1 $1$ C \(\Q(\zeta_{8})\) 192.658.1p $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.c1 $24$ 1.a1.a1
192.658.1p2 $1$ C \(\Q(\zeta_{8})\) 192.658.1p $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.c1 $24$ 1.a1.a1
192.658.1p3 $1$ C \(\Q(\zeta_{8})\) 192.658.1p $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.c1 $24$ 1.a1.a1
192.658.1p4 $1$ C \(\Q(\zeta_{8})\) 192.658.1p $C_2\times C_{12}.D_4$ $C_8$ $8$ 8.f1.c1 $24$ 1.a1.a1
192.658.2a $2$ R \(\Q\) 192.658.2a $C_2\times C_{12}.D_4$ $S_3$ $6$ 6.a1.a1 $32$ 6.a1.a1
192.658.2b $2$ R \(\Q\) 192.658.2b $C_2\times C_{12}.D_4$ $D_4$ $8$ 8.g1.a1 $24$ 4.a1.a1
192.658.2c $2$ R \(\Q\) 192.658.2c $C_2\times C_{12}.D_4$ $D_4$ $8$ 8.g1.b1 $24$ 4.a1.a1
192.658.2d $2$ R \(\Q\) 192.658.2d $C_2\times C_{12}.D_4$ $D_6$ $12$ 12.b1.b1 $16$ 6.a1.a1
192.658.2e $2$ R \(\Q\) 192.658.2e $C_2\times C_{12}.D_4$ $D_6$ $12$ 12.b1.a1 $16$ 6.a1.a1
192.658.2f $2$ R \(\Q\) 192.658.2f $C_2\times C_{12}.D_4$ $D_6$ $12$ 12.a1.a1 $16$ 6.a1.a1
192.658.2g $2$ S \(\Q\) 192.658.2g $C_2\times C_{12}.D_4$ $Q_8$ $8$ 8.h1.a1 $24$ 4.a1.a1
192.658.2h $2$ S \(\Q\) 192.658.2h $C_2\times C_{12}.D_4$ $Q_8$ $8$ 8.h1.b1 $24$ 4.a1.a1
192.658.2i1 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2i $C_2\times C_{12}.D_4$ $\OD_{16}$ $16$ 16.d1.b1 $12$ 4.a1.a1
192.658.2i2 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2i $C_2\times C_{12}.D_4$ $\OD_{16}$ $16$ 16.d1.b1 $12$ 4.a1.a1
192.658.2j1 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2j $C_2\times C_{12}.D_4$ $\OD_{16}$ $16$ 16.d1.a1 $12$ 4.a1.a1
192.658.2j2 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2j $C_2\times C_{12}.D_4$ $\OD_{16}$ $16$ 16.d1.a1 $12$ 4.a1.a1
192.658.2k1 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2k $C_2\times C_{12}.D_4$ $C_4\times S_3$ $24$ 24.c1.a1 $8$ 6.a1.a1
192.658.2k2 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2k $C_2\times C_{12}.D_4$ $C_4\times S_3$ $24$ 24.c1.a1 $8$ 6.a1.a1
192.658.2l1 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2l $C_2\times C_{12}.D_4$ $C_4\times S_3$ $24$ 24.a1.a1 $8$ 6.a1.a1
192.658.2l2 $2$ C \(\Q(\sqrt{-1}) \) 192.658.2l $C_2\times C_{12}.D_4$ $C_4\times S_3$ $24$ 24.a1.a1 $8$ 6.a1.a1
192.658.2m1 $2$ C \(\Q(\sqrt{-3}) \) 192.658.2m $C_2\times C_{12}.D_4$ $C_3:D_4$ $24$ 24.d1.a1 $8$ 12.a1.a1
192.658.2m2 $2$ C \(\Q(\sqrt{-3}) \) 192.658.2m $C_2\times C_{12}.D_4$ $C_3:D_4$ $24$ 24.d1.a1 $8$ 12.a1.a1
Next   displayed columns for results