Refine search
Elements of the group are displayed as matrices in $\GL_{2}(\Z/{78}\Z)$.
| Group | Label | Order | Size | Centralizer | Powers | Representative | |
|---|---|---|---|---|---|---|---|
| 2P | 3P | ||||||
| $C_{12}.D_6^2$ | 1A | $1$ | $1$ | $C_{12}.D_6^2$ | 1A | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2A | $2$ | $1$ | $C_{12}.D_6^2$ | 1A | 2A | $ \left(\begin{array}{rr} 53 & 0 \\ 0 & 53 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2B | $2$ | $1$ | $C_{12}.D_6^2$ | 1A | 2B | $ \left(\begin{array}{rr} 77 & 0 \\ 0 & 77 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2C | $2$ | $1$ | $C_{12}.D_6^2$ | 1A | 2C | $ \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2D | $2$ | $6$ | $C_6^2.C_2^3$ | 1A | 2D | $ \left(\begin{array}{rr} 25 & 33 \\ 0 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2E | $2$ | $6$ | $C_6^2.C_2^3$ | 1A | 2E | $ \left(\begin{array}{rr} 77 & 20 \\ 0 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2F | $2$ | $6$ | $C_6^2.C_2^3$ | 1A | 2F | $ \left(\begin{array}{rr} 38 & 33 \\ 39 & 14 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2G | $2$ | $6$ | $C_6^2.C_2^3$ | 1A | 2G | $ \left(\begin{array}{rr} 25 & 46 \\ 0 & 53 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2H | $2$ | $6$ | $C_2.D_6^2$ | 1A | 2H | $ \left(\begin{array}{rr} 61 & 18 \\ 36 & 43 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2I | $2$ | $6$ | $C_2.D_6^2$ | 1A | 2I | $ \left(\begin{array}{rr} 5 & 30 \\ 72 & 47 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2J | $2$ | $6$ | $C_2.D_6^2$ | 1A | 2J | $ \left(\begin{array}{rr} 35 & 18 \\ 36 & 17 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2K | $2$ | $6$ | $C_2.D_6^2$ | 1A | 2K | $ \left(\begin{array}{rr} 31 & 30 \\ 72 & 73 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2L | $2$ | $9$ | $D_{12}:C_2^3$ | 1A | 2L | $ \left(\begin{array}{rr} 53 & 65 \\ 0 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2M | $2$ | $9$ | $D_{12}:C_2^3$ | 1A | 2M | $ \left(\begin{array}{rr} 77 & 65 \\ 0 & 25 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2N | $2$ | $9$ | $D_{12}:C_2^3$ | 1A | 2N | $ \left(\begin{array}{rr} 40 & 13 \\ 39 & 14 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2O | $2$ | $9$ | $D_{12}:C_2^3$ | 1A | 2O | $ \left(\begin{array}{rr} 64 & 13 \\ 39 & 38 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2P | $2$ | $54$ | $C_2^3\times C_4$ | 1A | 2P | $ \left(\begin{array}{rr} 50 & 67 \\ 57 & 28 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2Q | $2$ | $54$ | $C_2^3\times C_4$ | 1A | 2Q | $ \left(\begin{array}{rr} 55 & 73 \\ 12 & 23 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2R | $2$ | $54$ | $C_2^3\times C_4$ | 1A | 2R | $ \left(\begin{array}{rr} 73 & 35 \\ 6 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 2S | $2$ | $54$ | $C_2^3\times C_4$ | 1A | 2S | $ \left(\begin{array}{rr} 29 & 21 \\ 12 & 49 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3A | $3$ | $2$ | $C_6.D_6^2$ | 3A | 1A | $ \left(\begin{array}{rr} 40 & 39 \\ 39 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3B | $3$ | $2$ | $C_6.D_6^2$ | 3B | 1A | $ \left(\begin{array}{rr} 61 & 18 \\ 0 & 55 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3C | $3$ | $2$ | $C_6.D_6^2$ | 3C | 1A | $ \left(\begin{array}{rr} 1 & 52 \\ 0 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3D | $3$ | $4$ | $C_{12}:C_6^2$ | 3D | 1A | $ \left(\begin{array}{rr} 22 & 57 \\ 39 & 55 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3E | $3$ | $4$ | $C_{12}:C_6^2$ | 3E | 1A | $ \left(\begin{array}{rr} 40 & 13 \\ 39 & 1 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3F | $3$ | $4$ | $C_{12}:C_6^2$ | 3F | 1A | $ \left(\begin{array}{rr} 61 & 70 \\ 0 & 55 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 3G | $3$ | $8$ | $C_3\times C_6\times C_{12}$ | 3G | 1A | $ \left(\begin{array}{rr} 22 & 31 \\ 39 & 55 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4A | $4$ | $2$ | $C_6.D_6^2$ | 2C | 4A | $ \left(\begin{array}{rr} 47 & 48 \\ 0 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4B | $4$ | $2$ | $C_6.D_6^2$ | 2C | 4B | $ \left(\begin{array}{rr} 73 & 48 \\ 0 & 31 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4C1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4C-1 | $ \left(\begin{array}{rr} 5 & 39 \\ 0 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4C-1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4C1 | $ \left(\begin{array}{rr} 47 & 39 \\ 0 & 47 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4D1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4D-1 | $ \left(\begin{array}{rr} 31 & 52 \\ 0 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4D-1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4D1 | $ \left(\begin{array}{rr} 73 & 52 \\ 0 & 47 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4E1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4E-1 | $ \left(\begin{array}{rr} 70 & 39 \\ 39 & 70 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4E-1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4E1 | $ \left(\begin{array}{rr} 34 & 39 \\ 39 & 34 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4F1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4F-1 | $ \left(\begin{array}{rr} 47 & 26 \\ 0 & 73 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4F-1 | $4$ | $3$ | $C_4.D_6^2$ | 2C | 4F1 | $ \left(\begin{array}{rr} 5 & 26 \\ 0 & 31 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4G | $4$ | $18$ | $C_2^3\times C_{12}$ | 2C | 4G | $ \left(\begin{array}{rr} 73 & 61 \\ 0 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4H | $4$ | $18$ | $C_2^3\times C_{12}$ | 2C | 4H | $ \left(\begin{array}{rr} 8 & 35 \\ 39 & 70 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4I | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4I | $ \left(\begin{array}{rr} 43 & 3 \\ 42 & 61 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4J | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4J | $ \left(\begin{array}{rr} 47 & 39 \\ 6 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4K | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4K | $ \left(\begin{array}{rr} 56 & 3 \\ 3 & 74 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4L | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4L | $ \left(\begin{array}{rr} 17 & 16 \\ 42 & 61 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4M | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4M | $ \left(\begin{array}{rr} 43 & 68 \\ 42 & 35 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4N | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4N | $ \left(\begin{array}{rr} 34 & 39 \\ 45 & 70 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4O | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4O | $ \left(\begin{array}{rr} 73 & 26 \\ 6 & 5 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 4P | $4$ | $18$ | $C_{12}:C_2^3$ | 2C | 4P | $ \left(\begin{array}{rr} 47 & 52 \\ 6 & 31 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 6A | $6$ | $2$ | $C_6.D_6^2$ | 3A | 2A | $ \left(\begin{array}{rr} 53 & 39 \\ 39 & 14 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 6B | $6$ | $2$ | $C_6.D_6^2$ | 3A | 2B | $ \left(\begin{array}{rr} 77 & 39 \\ 39 & 38 \end{array}\right) $ |
| $C_{12}.D_6^2$ | 6C | $6$ | $2$ | $C_6.D_6^2$ | 3B | 2A | $ \left(\begin{array}{rr} 29 & 60 \\ 0 & 35 \end{array}\right) $ |