| Label |
Degree |
Type |
Faithful |
Conductor |
Field of Traces |
$\Q$-character |
Group |
Image |
Image Order |
Kernel |
Kernel Order |
Center |
Center Order |
Center Index |
Schur Index |
| 1728.39127.1a |
$1$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.1a |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_1$ |
$1$ |
1.a1 |
$1728$ |
1.a1 |
$1728$ |
$1$ |
$1$ |
| 1728.39127.1b |
$1$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.1b |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.c1 |
$864$ |
1.a1 |
$1728$ |
$1$ |
$1$ |
| 1728.39127.1c |
$1$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.1c |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.b1 |
$864$ |
1.a1 |
$1728$ |
$1$ |
$1$ |
| 1728.39127.1d |
$1$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.1d |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.a1 |
$864$ |
1.a1 |
$1728$ |
$1$ |
$1$ |
| 1728.39127.2a |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2a |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2aa |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2aa |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$D_6$ |
$12$ |
12.b1 |
$144$ |
6.b1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2ab1 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
1728.39127.2ab |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$\SD_{16}$ |
$16$ |
16.a1 |
$108$ |
8.a1 |
$216$ |
$8$ |
$1$ |
| 1728.39127.2ab2 |
$2$ |
C |
|
$8$ |
\(\Q(\sqrt{-2}) \) |
1728.39127.2ab |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$\SD_{16}$ |
$16$ |
16.a1 |
$108$ |
8.a1 |
$216$ |
$8$ |
$1$ |
| 1728.39127.2ac1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ac |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ac2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ac |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ad1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ad |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ad2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ad |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ae1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ae |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ae2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ae |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2af1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2af |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2af2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2af |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ag1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ag |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ag2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ag |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ah1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ah |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ah2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ah |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ai1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ai |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ai2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ai |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2aj1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2aj |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2aj2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2aj |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ak1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ak |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ak2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ak |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2al1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2al |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2al2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2al |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2am1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2am |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2am2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2am |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2an1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2an |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2an2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2an |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.a1 |
$72$ |
12.a1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ao1 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ao |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.b1 |
$72$ |
12.b1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2ao2 |
$2$ |
C |
|
$3$ |
\(\Q(\sqrt{-3}) \) |
1728.39127.2ao |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$C_3:D_4$ |
$24$ |
24.b1 |
$72$ |
12.b1 |
$144$ |
$12$ |
$1$ |
| 1728.39127.2b |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2b |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2c |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2c |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2d |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2d |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2e |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2e |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2f |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2f |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2g |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2g |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2h |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2h |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2i |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2i |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2j |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2j |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2k |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2k |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2l |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2l |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1 |
$288$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2m |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2m |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.b1 |
$288$ |
6.b1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2n |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2n |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$D_4$ |
$8$ |
8.a1 |
$216$ |
4.a1 |
$432$ |
$4$ |
$1$ |
| 1728.39127.2o |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2o |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$D_6$ |
$12$ |
12.a1 |
$144$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2p |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2p |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$D_6$ |
$12$ |
12.a1 |
$144$ |
6.a1 |
$288$ |
$6$ |
$1$ |
| 1728.39127.2q |
$2$ |
R |
|
$1$ |
\(\Q\) |
1728.39127.2q |
$(C_3\times C_6).\GL(2,\mathbb{Z}/4)$ |
$D_6$ |
$12$ |
12.a1 |
$144$ |
6.a1 |
$288$ |
$6$ |
$1$ |