Learn more

Refine search


Results (1-50 of 484 matches)

Next   displayed columns for results

Elements of the group are displayed as words in the presentation $\langle a, b, c \mid a^{2}=b^{2}=c^{418}=[a,b]=[a,c]=1, c^{b}=c^{265} \rangle$ .

Group Label Order Size Centralizer Powers Representative
2P 11P 19P
$C_{22}\times D_{38}$ 1A $1$ $1$ $C_{22}\times D_{38}$ 1A 1A 1A $1$
$C_{22}\times D_{38}$ 2A $2$ $1$ $C_{22}\times D_{38}$ 1A 2A 2A $c^{209}$
$C_{22}\times D_{38}$ 2B $2$ $1$ $C_{22}\times D_{38}$ 1A 2B 2B $a$
$C_{22}\times D_{38}$ 2C $2$ $1$ $C_{22}\times D_{38}$ 1A 2C 2C $ac^{209}$
$C_{22}\times D_{38}$ 2D $2$ $19$ $C_2^2\times C_{22}$ 1A 2D 2D $bc^{154}$
$C_{22}\times D_{38}$ 2E $2$ $19$ $C_2^2\times C_{22}$ 1A 2E 2E $bc^{77}$
$C_{22}\times D_{38}$ 2F $2$ $19$ $C_2^2\times C_{22}$ 1A 2F 2F $abc^{154}$
$C_{22}\times D_{38}$ 2G $2$ $19$ $C_2^2\times C_{22}$ 1A 2G 2G $abc^{77}$
$C_{22}\times D_{38}$ 11A1 $11$ $1$ $C_{22}\times D_{38}$ 11A2 11A3 11A5 $c^{114}$
$C_{22}\times D_{38}$ 11A-1 $11$ $1$ $C_{22}\times D_{38}$ 11A-2 11A-3 11A-5 $c^{304}$
$C_{22}\times D_{38}$ 11A2 $11$ $1$ $C_{22}\times D_{38}$ 11A4 11A-5 11A-1 $c^{228}$
$C_{22}\times D_{38}$ 11A-2 $11$ $1$ $C_{22}\times D_{38}$ 11A-4 11A5 11A1 $c^{190}$
$C_{22}\times D_{38}$ 11A3 $11$ $1$ $C_{22}\times D_{38}$ 11A-5 11A-2 11A4 $c^{342}$
$C_{22}\times D_{38}$ 11A-3 $11$ $1$ $C_{22}\times D_{38}$ 11A5 11A2 11A-4 $c^{76}$
$C_{22}\times D_{38}$ 11A4 $11$ $1$ $C_{22}\times D_{38}$ 11A-3 11A1 11A-2 $c^{38}$
$C_{22}\times D_{38}$ 11A-4 $11$ $1$ $C_{22}\times D_{38}$ 11A3 11A-1 11A2 $c^{380}$
$C_{22}\times D_{38}$ 11A5 $11$ $1$ $C_{22}\times D_{38}$ 11A-1 11A4 11A3 $c^{152}$
$C_{22}\times D_{38}$ 11A-5 $11$ $1$ $C_{22}\times D_{38}$ 11A1 11A-4 11A-3 $c^{266}$
$C_{22}\times D_{38}$ 19A1 $19$ $2$ $C_2\times C_{418}$ 19A2 19A3 19A5 $c^{22}$
$C_{22}\times D_{38}$ 19A2 $19$ $2$ $C_2\times C_{418}$ 19A4 19A6 19A9 $c^{44}$
$C_{22}\times D_{38}$ 19A3 $19$ $2$ $C_2\times C_{418}$ 19A6 19A9 19A4 $c^{66}$
$C_{22}\times D_{38}$ 19A4 $19$ $2$ $C_2\times C_{418}$ 19A8 19A7 19A1 $c^{88}$
$C_{22}\times D_{38}$ 19A5 $19$ $2$ $C_2\times C_{418}$ 19A9 19A4 19A6 $c^{110}$
$C_{22}\times D_{38}$ 19A6 $19$ $2$ $C_2\times C_{418}$ 19A7 19A1 19A8 $c^{132}$
$C_{22}\times D_{38}$ 19A7 $19$ $2$ $C_2\times C_{418}$ 19A5 19A2 19A3 $c^{154}$
$C_{22}\times D_{38}$ 19A8 $19$ $2$ $C_2\times C_{418}$ 19A3 19A5 19A2 $c^{176}$
$C_{22}\times D_{38}$ 19A9 $19$ $2$ $C_2\times C_{418}$ 19A1 19A8 19A7 $c^{198}$
$C_{22}\times D_{38}$ 22A1 $22$ $1$ $C_{22}\times D_{38}$ 11A4 22A3 22A5 $c^{19}$
$C_{22}\times D_{38}$ 22A-1 $22$ $1$ $C_{22}\times D_{38}$ 11A-4 22A-3 22A-5 $c^{399}$
$C_{22}\times D_{38}$ 22A3 $22$ $1$ $C_{22}\times D_{38}$ 11A1 22A9 22A-7 $c^{57}$
$C_{22}\times D_{38}$ 22A-3 $22$ $1$ $C_{22}\times D_{38}$ 11A-1 22A-9 22A7 $c^{361}$
$C_{22}\times D_{38}$ 22A5 $22$ $1$ $C_{22}\times D_{38}$ 11A-2 22A-7 22A3 $c^{95}$
$C_{22}\times D_{38}$ 22A-5 $22$ $1$ $C_{22}\times D_{38}$ 11A2 22A7 22A-3 $c^{323}$
$C_{22}\times D_{38}$ 22A7 $22$ $1$ $C_{22}\times D_{38}$ 11A-5 22A-1 22A-9 $c^{133}$
$C_{22}\times D_{38}$ 22A-7 $22$ $1$ $C_{22}\times D_{38}$ 11A5 22A1 22A9 $c^{285}$
$C_{22}\times D_{38}$ 22A9 $22$ $1$ $C_{22}\times D_{38}$ 11A3 22A5 22A1 $c^{171}$
$C_{22}\times D_{38}$ 22A-9 $22$ $1$ $C_{22}\times D_{38}$ 11A-3 22A-5 22A-1 $c^{247}$
$C_{22}\times D_{38}$ 22B1 $22$ $1$ $C_{22}\times D_{38}$ 11A-3 22B3 22B5 $ac^{38}$
$C_{22}\times D_{38}$ 22B-1 $22$ $1$ $C_{22}\times D_{38}$ 11A3 22B-3 22B-5 $ac^{380}$
$C_{22}\times D_{38}$ 22B3 $22$ $1$ $C_{22}\times D_{38}$ 11A2 22B9 22B-7 $ac^{114}$
$C_{22}\times D_{38}$ 22B-3 $22$ $1$ $C_{22}\times D_{38}$ 11A-2 22B-9 22B7 $ac^{304}$
$C_{22}\times D_{38}$ 22B5 $22$ $1$ $C_{22}\times D_{38}$ 11A-4 22B-7 22B3 $ac^{190}$
$C_{22}\times D_{38}$ 22B-5 $22$ $1$ $C_{22}\times D_{38}$ 11A4 22B7 22B-3 $ac^{228}$
$C_{22}\times D_{38}$ 22B7 $22$ $1$ $C_{22}\times D_{38}$ 11A1 22B-1 22B-9 $ac^{266}$
$C_{22}\times D_{38}$ 22B-7 $22$ $1$ $C_{22}\times D_{38}$ 11A-1 22B1 22B9 $ac^{152}$
$C_{22}\times D_{38}$ 22B9 $22$ $1$ $C_{22}\times D_{38}$ 11A-5 22B5 22B1 $ac^{342}$
$C_{22}\times D_{38}$ 22B-9 $22$ $1$ $C_{22}\times D_{38}$ 11A5 22B-5 22B-1 $ac^{76}$
$C_{22}\times D_{38}$ 22C1 $22$ $1$ $C_{22}\times D_{38}$ 11A4 22C3 22C5 $ac^{19}$
$C_{22}\times D_{38}$ 22C-1 $22$ $1$ $C_{22}\times D_{38}$ 11A-4 22C-3 22C-5 $ac^{399}$
$C_{22}\times D_{38}$ 22C3 $22$ $1$ $C_{22}\times D_{38}$ 11A1 22C9 22C-7 $ac^{57}$
Next   displayed columns for results