Refine search
Elements of the group are displayed as matrices in $\GL_{2}(\Z/{8}\Z)$.
| Group | Label | Order | Size | Centralizer | Powers | Representative |
|---|---|---|---|---|---|---|
| 2P | ||||||
| $C_2^3.C_4^2$ | 1A | $1$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2A | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 0 \\ 4 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2B | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 4 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2C | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 4 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2D | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2E | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 4 \\ 4 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2F | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 4 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2G | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 4 \\ 0 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2H | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 0 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2I | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 4 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2J | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 4 \\ 4 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2K | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 0 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2L | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 0 \\ 4 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2M | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 4 \\ 0 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2N | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 4 \\ 4 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2O | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2P | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2Q | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 4 \\ 0 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2R | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 0 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2S | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 0 \\ 4 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2T | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2U | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2V | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 4 \\ 4 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2W | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 7 & 0 \\ 4 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2X | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 3 & 0 \\ 0 & 7 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2Y | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 4 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2Z | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 4 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2AA | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 4 \\ 0 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2AB | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 4 \\ 4 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2AC | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2AD | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 2AE | $2$ | $1$ | $C_2^3.C_4^2$ | 1A | $ \left(\begin{array}{rr} 5 & 4 \\ 4 & 5 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4A1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 5 & 4 \\ 6 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4A-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 5 & 4 \\ 2 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4B1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 3 & 2 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4B-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 3 & 6 \\ 4 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4C1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 5 & 0 \\ 6 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4C-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 5 & 0 \\ 2 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4D1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 3 & 2 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4D-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 3 & 6 \\ 0 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4E1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AE | $ \left(\begin{array}{rr} 3 & 6 \\ 6 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4E-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AE | $ \left(\begin{array}{rr} 3 & 2 \\ 2 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4F1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 7 & 0 \\ 6 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4F-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 7 & 0 \\ 2 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4G1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4G-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4H1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 3 & 0 \\ 2 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4H-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AC | $ \left(\begin{array}{rr} 3 & 0 \\ 6 & 3 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4I1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 5 & 2 \\ 4 & 1 \end{array}\right) $ |
| $C_2^3.C_4^2$ | 4I-1 | $4$ | $2$ | $C_2^4\times C_4$ | 2AD | $ \left(\begin{array}{rr} 5 & 6 \\ 4 & 1 \end{array}\right) $ |