Refine search
Results (49 matches)
Download displayed columns for resultsElements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\GOPlus(6,3)$.
Group | Label | Order | Size | Centralizer | Powers | Representative | |||
---|---|---|---|---|---|---|---|---|---|
2P | 3P | 5P | 13P | ||||||
$\POPlus(6,3)$ | 1A | $1$ | $1$ | not computed | 1A | 1A | 1A | 1A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 2A | $2$ | $117$ | not computed | 1A | 2A | 2A | 2A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 2 & 1 & 2 \\ 2 & 0 & 2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 2 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 2B | $2$ | $117$ | not computed | 1A | 2B | 2B | 2B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 2 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 2C | $2$ | $2106$ | not computed | 1A | 2C | 2C | 2C | $ \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 1 & 2 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 2D | $2$ | $5265$ | not computed | 1A | 2D | 2D | 2D | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 2 & 2 & 0 \\ 2 & 1 & 2 & 1 & 0 & 2 \\ 2 & 1 & 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 2 & 2 & 1 \\ 2 & 0 & 2 & 1 & 1 & 2 \\ 0 & 2 & 1 & 2 & 2 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 2E | $2$ | $10530$ | not computed | 1A | 2E | 2E | 2E | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 3A | $3$ | $1040$ | not computed | 3A | 1A | 3A | 3A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 3B | $3$ | $3120$ | not computed | 3B | 1A | 3B | 3B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & 2 & 2 & 2 \\ 2 & 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & 2 \\ 2 & 1 & 0 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 3C | $3$ | $3120$ | not computed | 3C | 1A | 3C | 3C | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 \\ 0 & 2 & 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & 1 \\ 2 & 1 & 0 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 3D | $3$ | $74880$ | not computed | 3D | 1A | 3D | 3D | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4A | $4$ | $4212$ | not computed | 2C | 4A | 4A | 4A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 2 & 2 & 0 \\ 0 & 2 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4B | $4$ | $63180$ | not computed | 2D | 4B | 4B | 4B | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 2 & 2 & 2 & 1 \\ 0 & 0 & 2 & 0 & 1 & 1 \\ 2 & 0 & 1 & 2 & 2 & 2 \\ 2 & 2 & 2 & 1 & 2 & 0 \\ 2 & 1 & 2 & 2 & 2 & 0 \\ 1 & 1 & 0 & 2 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4C | $4$ | $63180$ | not computed | 2C | 4C | 4C | 4C | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 1 & 0 & 1 & 2 & 1 & 1 \\ 2 & 0 & 2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 & 1 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4D | $4$ | $63180$ | not computed | 2C | 4D | 4D | 4D | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 0 & 2 & 2 \\ 0 & 1 & 2 & 1 & 1 & 2 \\ 1 & 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 0 & 2 & 2 & 1 \\ 2 & 1 & 0 & 2 & 1 & 1 \\ 2 & 0 & 2 & 0 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4E | $4$ | $63180$ | not computed | 2D | 4E | 4E | 4E | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 2 & 0 & 2 & 0 \\ 1 & 2 & 0 & 0 & 2 & 2 \\ 2 & 2 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 & 2 \\ 2 & 2 & 0 & 2 & 2 & 1 \\ 1 & 1 & 0 & 2 & 2 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 4F | $4$ | $189540$ | not computed | 2C | 4F | 4F | 4F | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 & 2 & 1 \\ 0 & 2 & 2 & 1 & 2 & 2 \\ 0 & 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 5A | $5$ | $303264$ | not computed | 5A | 5A | 1A | 5A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 2 & 1 & 2 & 2 & 0 \\ 2 & 0 & 2 & 1 & 1 & 2 \\ 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6A | $6$ | $9360$ | not computed | 3A | 2A | 6A | 6A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 2 & 2 & 2 \\ 2 & 1 & 2 & 2 & 2 & 0 \\ 1 & 0 & 2 & 2 & 0 & 2 \\ 2 & 0 & 2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 2 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6B | $6$ | $9360$ | not computed | 3A | 2B | 6B | 6B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 2 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6C | $6$ | $28080$ | not computed | 3B | 2A | 6C | 6C | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 \\ 2 & 2 & 0 & 1 & 2 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6D | $6$ | $28080$ | not computed | 3C | 2B | 6D | 6D | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 & 1 & 0 \\ 2 & 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 2 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6E | $6$ | $56160$ | not computed | 3C | 2A | 6E | 6E | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 2 & 2 \\ 0 & 2 & 2 & 2 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 & 1 \\ 0 & 2 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6F | $6$ | $56160$ | not computed | 3B | 2B | 6F | 6F | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 2 & 0 & 0 \\ 2 & 2 & 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 0 & 1 & 1 \\ 0 & 2 & 2 & 0 & 0 & 1 \\ 0 & 2 & 2 & 2 & 1 & 1 \\ 0 & 2 & 2 & 1 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6G | $6$ | $84240$ | not computed | 3A | 2D | 6G | 6G | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 2 & 0 & 1 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6H | $6$ | $84240$ | not computed | 3B | 2C | 6H | 6H | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 2 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 \\ 2 & 2 & 1 & 2 & 2 & 0 \\ 2 & 2 & 2 & 1 & 0 & 2 \\ 1 & 2 & 2 & 1 & 1 & 2 \\ 0 & 2 & 2 & 0 & 0 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6I | $6$ | $84240$ | not computed | 3C | 2C | 6I | 6I | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 1 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6J | $6$ | $84240$ | not computed | 3B | 2E | 6J | 6J | $ \left[ \left(\begin{array}{rrrrrr} 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 1 & 1 \\ 2 & 0 & 2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6K | $6$ | $84240$ | not computed | 3C | 2E | 6K | 6K | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 0 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 2 \\ 2 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6L | $6$ | $168480$ | not computed | 3C | 2D | 6L | 6L | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 2 & 2 \\ 2 & 2 & 1 & 2 & 2 & 0 \\ 2 & 1 & 0 & 0 & 2 & 2 \\ 2 & 2 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6M | $6$ | $168480$ | not computed | 3B | 2D | 6M | 6M | $ \left[ \left(\begin{array}{rrrrrr} 1 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 0 & 0 & 1 \\ 2 & 0 & 2 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 6N | $6$ | $673920$ | not computed | 3D | 2E | 6N | 6N | $ \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 & 0 & 0 \\ 2 & 2 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 2 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 8A | $8$ | $758160$ | not computed | 4E | 8A | 8A | 8A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 2 & 1 & 1 \\ 2 & 0 & 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 8B | $8$ | $758160$ | not computed | 4E | 8B | 8B | 8B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 2 & 0 & 1 \\ 2 & 1 & 2 & 2 & 2 & 0 \\ 2 & 1 & 2 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & 2 \\ 2 & 0 & 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 2 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 9A | $9$ | $224640$ | not computed | 9A | 3A | 9A | 9A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 1 & 2 & 0 & 2 \\ 2 & 1 & 2 & 2 & 1 & 2 \\ 2 & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 9B | $9$ | $224640$ | not computed | 9B | 3A | 9B | 9B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 10A | $10$ | $303264$ | not computed | 5A | 10A | 2C | 10A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 2 & 2 \\ 0 & 2 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 2 & 2 & 0 \\ 0 & 2 & 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 2 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 10B | $10$ | $606528$ | not computed | 5A | 10B | 2A | 10B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 2 & 2 & 0 \\ 0 & 2 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 10C | $10$ | $606528$ | not computed | 5A | 10C | 2B | 10C | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 & 2 & 2 \\ 1 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12A | $12$ | $168480$ | not computed | 6I | 4A | 12A | 12A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 2 & 2 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 1 & 2 & 1 \\ 0 & 2 & 0 & 2 & 0 & 1 \\ 1 & 1 & 2 & 0 & 2 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12B | $12$ | $168480$ | not computed | 6H | 4A | 12B | 12B | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 1 & 1 & 0 \\ 2 & 1 & 2 & 2 & 1 & 2 \\ 2 & 2 & 2 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12C | $12$ | $505440$ | not computed | 6G | 4B | 12C | 12C | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 2 & 1 & 2 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12D | $12$ | $505440$ | not computed | 6H | 4C | 12D | 12D | $ \left[ \left(\begin{array}{rrrrrr} 1 & 2 & 1 & 2 & 2 & 0 \\ 1 & 2 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & 2 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 2 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12E | $12$ | $505440$ | not computed | 6I | 4D | 12E | 12E | $ \left[ \left(\begin{array}{rrrrrr} 2 & 1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 2 & 0 & 0 & 2 \\ 0 & 2 & 1 & 2 & 2 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 12F | $12$ | $505440$ | not computed | 6G | 4E | 12F | 12F | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 2 & 2 & 2 \\ 2 & 2 & 1 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 1 & 2 & 2 & 2 & 1 & 0 \\ 2 & 0 & 0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 13A1 | $13$ | $933120$ | not computed | 13A2 | 13A1 | 13A2 | 1A | $ \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 2 & 2 & 2 & 1 & 2 \\ 2 & 1 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 2 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 13A2 | $13$ | $933120$ | not computed | 13A1 | 13A2 | 13A1 | 1A | $ \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 2 & 2 & 0 \\ 2 & 0 & 2 & 2 & 2 & 1 \\ 0 & 2 & 2 & 0 & 0 & 2 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 18A | $18$ | $673920$ | not computed | 9A | 6A | 18A | 18A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 2 & 2 & 1 & 2 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 2 & 0 & 2 & 1 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 & 1 \\ 2 & 0 & 2 & 0 & 1 & 0 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 18B | $18$ | $673920$ | not computed | 9B | 6B | 18B | 18B | $ \left[ \left(\begin{array}{rrrrrr} 0 & 2 & 2 & 2 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 2 \\ 1 & 0 & 2 & 2 & 1 & 2 \\ 1 & 0 & 2 & 1 & 1 & 1 \end{array}\right) \right] $ |
$\POPlus(6,3)$ | 20A | $20$ | $606528$ | not computed | 10A | 20A | 4A | 20A | $ \left[ \left(\begin{array}{rrrrrr} 0 & 1 & 2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 2 \\ 1 & 2 & 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 & 1 & 1 \end{array}\right) \right] $ |