Refine search
Label | Subgroup | Ambient | Quotient | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Order | Sylow | norm | char | max | cent | ab | Name | Order | Name | Size | max | ab | |||
96.168.1.a1.a1 | $C_{12}:D_4$ | $2^{5} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_1$ | $1$ | ✓ | |||||||
96.168.2.a1.a1 | $C_6\times D_4$ | $2^{4} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | |||||||
96.168.2.a1.b1 | $C_6\times D_4$ | $2^{4} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | |||||||
96.168.2.b1.a1 | $C_2^2\times C_{12}$ | $2^{4} \cdot 3$ | ✓ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | |||||
96.168.2.c1.a1 | $C_2^2:C_{12}$ | $2^{4} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | |||||||
96.168.2.c1.b1 | $C_2^2:C_{12}$ | $2^{4} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | |||||||
96.168.2.d1.a1 | $C_6\times D_4$ | $2^{4} \cdot 3$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | ||||||
96.168.2.e1.a1 | $C_4:C_{12}$ | $2^{4} \cdot 3$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2$ | $2$ | ✓ | ||||||
96.168.3.a1.a1 | $C_4:D_4$ | $2^{5}$ | $2$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_3$ | $3$ | ✓ | |||||
96.168.4.a1.a1 | $C_2^2\times C_6$ | $2^{3} \cdot 3$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||
96.168.4.b1.a1 | $C_2^2\times C_6$ | $2^{3} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
96.168.4.b1.b1 | $C_2^2\times C_6$ | $2^{3} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
96.168.4.c1.a1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||
96.168.4.d1.a1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||
96.168.4.e1.a1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
96.168.4.e1.b1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
96.168.4.f1.a1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | |||||||||
96.168.4.f1.b1 | $C_2\times C_{12}$ | $2^{3} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | |||||||||
96.168.4.g1.a1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.4.g1.b1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.4.h1.a1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.4.h1.b1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.4.h1.c1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.4.h1.d1 | $C_3\times D_4$ | $2^{3} \cdot 3$ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{2}$ | $-$ | ||||||||||
96.168.6.a1.a1 | $C_2\times D_4$ | $2^{4}$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
96.168.6.a1.b1 | $C_2\times D_4$ | $2^{4}$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
96.168.6.b1.a1 | $C_2^2\times C_4$ | $2^{4}$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||
96.168.6.c1.a1 | $C_2^2:C_4$ | $2^{4}$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
96.168.6.c1.b1 | $C_2^2:C_4$ | $2^{4}$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
96.168.6.d1.a1 | $C_2\times D_4$ | $2^{4}$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | |||||||
96.168.6.e1.a1 | $C_4:C_4$ | $2^{4}$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_6$ | $2 \cdot 3$ | ✓ | |||||||
96.168.8.a1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2^3$ | $2^{3}$ | ✓ | |||||
96.168.8.b1.a1 | $C_{12}$ | $2^{2} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $D_4$ | $2^{3}$ | ||||||||
96.168.8.b1.b1 | $C_{12}$ | $2^{2} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $D_4$ | $2^{3}$ | ||||||||
96.168.8.c1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $D_4$ | $2^{3}$ | ||||||||
96.168.8.c1.b1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $D_4$ | $2^{3}$ | ||||||||
96.168.8.d1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.e1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.e1.b1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.f1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.g1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.g1.b1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.h1.a1 | $C_{12}$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.i1.a1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.i1.b1 | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.j1.a1 | $C_{12}$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.8.j1.b1 | $C_{12}$ | $2^{2} \cdot 3$ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $2^{3}$ | $-$ | |||||||||
96.168.12.a1.a1 | $C_2^3$ | $2^{3}$ | ✓ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | ||||||
96.168.12.b1.a1 | $C_2^3$ | $2^{3}$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ | |||||||
96.168.12.b1.b1 | $C_2^3$ | $2^{3}$ | ✓ | ✓ | $C_{12}:D_4$ | $2^{5} \cdot 3$ | $C_2\times C_6$ | $2^{2} \cdot 3$ | ✓ |