| Label |
Subgroup |
|
Ambient |
|
Quotient |
| Name |
Order |
Sylow |
norm |
char |
max |
cent |
cyc |
ab |
nilp |
sup solv |
solv |
perf |
simp |
Agp |
Zgp |
metab |
metacyc |
Name |
Order |
Name |
Size |
max |
cyc |
ab |
nilp |
sup solv |
solv |
simp |
Agp |
metab |
| 4608.dl.1.a1 |
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_1$ |
$1$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.2.A |
$C_2^4:D_6^2$ |
$2^{8} \cdot 3^{2}$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
| 4608.dl.2.B |
$\GL(2,\mathbb{Z}/4):S_4$ |
$2^{8} \cdot 3^{2}$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
| 4608.dl.2.C |
$(C_2^2\times A_4^2):C_4$ |
$2^{8} \cdot 3^{2}$ |
|
✓ |
✓ |
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
| 4608.dl.2.D |
$S_4^2:C_2^2$ |
$2^{8} \cdot 3^{2}$ |
|
✓ |
|
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
| 4608.dl.2.E |
$\POPlus(4,3):C_4$ |
$2^{8} \cdot 3^{2}$ |
|
✓ |
|
✓ |
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2$ |
$2$ |
|
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
✓ |
| 4608.dl.4.A |
$A_4^2:C_2^3$ |
$2^{7} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.4.B |
$A_4^2:C_2^3$ |
$2^{7} \cdot 3^{2}$ |
|
✓ |
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.4.C |
$C_2\times S_4^2$ |
$2^{7} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.4.D |
$C_2.S_4^2$ |
$2^{7} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.4.E |
$C_2\times A_4^2:C_4$ |
$2^{7} \cdot 3^{2}$ |
|
✓ |
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^2$ |
$2^{2}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.4.F |
$A_4^2:C_2^3$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.4.G |
$A_4\times \GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.4.H |
$A_4^2:C_2^3$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.4.I |
$A_4:\GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.4.J |
$A_4^2:C_2^3$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.4.K |
$S_4\wr C_2$ |
$2^{7} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.6.A |
$C_2^5:S_4$ |
$2^{8} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2 \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.6.B |
$A_4:D_4^2$ |
$2^{8} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2 \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.A |
$C_2^2\times A_4^2$ |
$2^{6} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
✓ |
|
✓ |
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$D_4$ |
$2^{3}$ |
|
|
|
✓ |
✓ |
✓ |
|
|
✓ |
| 4608.dl.8.B |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$C_2^3$ |
$2^{3}$ |
|
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
| 4608.dl.8.C |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
✓ |
✓ |
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$D_4$ |
$2^{3}$ |
|
|
|
✓ |
✓ |
✓ |
|
|
✓ |
| 4608.dl.8.D |
$\POPlus(4,3)$ |
$2^{6} \cdot 3^{2}$ |
|
✓ |
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
$D_4$ |
$2^{3}$ |
|
|
|
✓ |
✓ |
✓ |
|
|
✓ |
| 4608.dl.8.E |
$\GL(2,\mathbb{Z}/4):S_3$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.F |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.G |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.H |
$A_4^2:C_4$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.I |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.J |
$A_4^2:C_2^2$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.K |
$\POPlus(4,3)$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.L |
$\POPlus(4,3)$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.M |
$S_4^2$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.8.N |
$A_4^2:C_4$ |
$2^{6} \cdot 3^{2}$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{3}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.9.a1 |
$C_2^6:D_4$ |
$2^{9}$ |
$2$ |
|
|
✓ |
|
|
|
✓ |
✓ |
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$3^{2}$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.A |
$C_2^2:\GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.B |
$\GL(2,\mathbb{Z}/4):C_4$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.C |
$\GL(2,\mathbb{Z}/4):C_2^2$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.D |
$C_2^4:D_{12}$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.E |
$C_2^5:A_4$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
✓ |
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.F |
$C_2^2\wr S_3$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.G |
$C_2^6:C_6$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
✓ |
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.H |
$C_2^2\times \GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.I |
$C_2^2\times \GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.J |
$C_2^2\wr S_3$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.K |
$C_4:\GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.L |
$C_2^5.D_6$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.M |
$C_2^2:\GL(2,\mathbb{Z}/4)$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.N |
$C_2^5.D_6$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.O |
$C_2^4:S_4$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
| 4608.dl.12.P |
$C_2^4:S_4$ |
$2^{7} \cdot 3$ |
|
|
|
|
|
|
|
|
|
✓ |
|
|
|
|
|
|
|
$C_2^6:\SOPlus(4,2)$ |
$2^{9} \cdot 3^{2}$ |
|
|
$2^{2} \cdot 3$ |
|
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |
$-$ |