Properties

Label 9600.cb
Order \( 2^{7} \cdot 3 \cdot 5^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3 \cdot 5^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $14$
Trans deg. $100$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 14 | (2,4)(3,5), (1,14,11,12,13)(2,3,5,4), (2,3)(4,5), (1,11)(3,4)(6,10,8)(7,9)(12,13), (1,14)(2,5)(3,4)(11,13), (2,5), (1,14)(2,5)(3,4)(9,10)(11,13) >;
 
Copy content gap:G := Group( (2,4)(3,5), (1,14,11,12,13)(2,3,5,4), (2,3)(4,5), (1,11)(3,4)(6,10,8)(7,9)(12,13), (1,14)(2,5)(3,4)(11,13), (2,5), (1,14)(2,5)(3,4)(9,10)(11,13) );
 
Copy content sage:G = PermutationGroup(['(2,4)(3,5)', '(1,14,11,12,13)(2,3,5,4)', '(2,3)(4,5)', '(1,11)(3,4)(6,10,8)(7,9)(12,13)', '(1,14)(2,5)(3,4)(11,13)', '(2,5)', '(1,14)(2,5)(3,4)(9,10)(11,13)'])
 

Group information

Description:$D_4\times D_5\times S_5$
Order: \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^4:C_2.C_2^4$, of order \(76800\)\(\medspace = 2^{10} \cdot 3 \cdot 5^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_5$, $A_5$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 12 15 20 30 60
Elements 1 935 20 1752 124 1420 1940 480 80 1648 880 320 9600
Conjugacy classes   1 23 1 16 5 15 35 4 2 20 14 4 140
Divisions 1 23 1 16 3 15 21 4 1 11 7 2 105
Autjugacy classes 1 13 1 12 3 8 13 4 1 9 4 2 71

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 5 6 8 10 12 16 20 24 32 40 48
Irr. complex chars.   16 20 20 16 8 20 20 10 4 4 2 0 0 0 140
Irr. rational chars. 16 4 24 16 8 6 4 2 8 8 4 2 2 1 105

Minimal presentations

Permutation degree:$14$
Transitive degree:$100$
Rank: $4$
Inequivalent generating quadruples: $33294431520$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 16 16 32
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $14$ $\langle(2,4)(3,5), (1,14,11,12,13)(2,3,5,4), (2,3)(4,5), (1,11)(3,4)(6,10,8)(7,9)(12,13), (1,14)(2,5)(3,4)(11,13), (2,5), (1,14)(2,5)(3,4)(9,10)(11,13)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 14 | (2,4)(3,5), (1,14,11,12,13)(2,3,5,4), (2,3)(4,5), (1,11)(3,4)(6,10,8)(7,9)(12,13), (1,14)(2,5)(3,4)(11,13), (2,5), (1,14)(2,5)(3,4)(9,10)(11,13) >;
 
Copy content gap:G := Group( (2,4)(3,5), (1,14,11,12,13)(2,3,5,4), (2,3)(4,5), (1,11)(3,4)(6,10,8)(7,9)(12,13), (1,14)(2,5)(3,4)(11,13), (2,5), (1,14)(2,5)(3,4)(9,10)(11,13) );
 
Copy content sage:G = PermutationGroup(['(2,4)(3,5)', '(1,14,11,12,13)(2,3,5,4)', '(2,3)(4,5)', '(1,11)(3,4)(6,10,8)(7,9)(12,13)', '(1,14)(2,5)(3,4)(11,13)', '(2,5)', '(1,14)(2,5)(3,4)(9,10)(11,13)'])
 
Direct product: $D_4$ $\, \times\, $ $D_5$ $\, \times\, $ $S_5$
Semidirect product: $(C_4\times S_5)$ $\,\rtimes\,$ $D_{10}$ $(C_4:S_5)$ $\,\rtimes\,$ $D_{10}$ $D_{20}$ $\,\rtimes\,$ $(C_2\times S_5)$ $(D_4\times A_5)$ $\,\rtimes\,$ $D_{10}$ all 32
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $D_{10}$ . $(C_2^2\times S_5)$ $(C_{10}\times S_5)$ . $C_2^3$ $(C_{10}:S_5)$ . $C_2^3$ $C_{10}$ . $(C_2^3\times S_5)$ all 10

Elements of the group are displayed as permutations of degree 14.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 198744 subgroups in 4405 conjugacy classes, 122 normal (50 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $D_{10}.(C_2\times S_5)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{10}\times A_5$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $D_{10}.(C_2\times S_5)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5\times D_4$ $G/\operatorname{Fit} \simeq$ $C_2\times S_5$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $D_4\times D_5$ $G/R \simeq$ $S_5$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{10}\times A_5$ $G/\operatorname{soc} \simeq$ $C_2^4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$

Subgroup diagram and profile

Series

Derived series $D_4\times D_5\times S_5$ $\rhd$ $D_4\times D_5\times S_5$ $\rhd$ $C_{10}\times A_5$ $\rhd$ $C_{10}\times A_5$ $\rhd$ $A_5$ $\rhd$ $A_5$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $D_4\times D_5\times S_5$ $\rhd$ $D_4\times D_5\times S_5$ $\rhd$ $(D_4\times D_5).A_5$ $\rhd$ $(D_4\times D_5).A_5$ $\rhd$ $D_4\times D_5$ $\rhd$ $D_4\times D_5$ $\rhd$ $C_5\times D_4$ $\rhd$ $C_5\times D_4$ $\rhd$ $C_2\times C_{10}$ $\rhd$ $C_2\times C_{10}$ $\rhd$ $C_{10}$ $\rhd$ $C_{10}$ $\rhd$ $C_5$ $\rhd$ $C_5$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $D_4\times D_5\times S_5$ $\rhd$ $D_4\times D_5\times S_5$ $\rhd$ $C_{10}\times A_5$ $\rhd$ $C_{10}\times A_5$ $\rhd$ $C_5\times A_5$ $\rhd$ $C_5\times A_5$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2$ $\lhd$ $D_4$ $\lhd$ $D_4$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $140 \times 140$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $105 \times 105$ rational character table.