Properties

Label 944784.fc
Order \( 2^{4} \cdot 3^{10} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 3 \)
$\card{\Aut(G)}$ \( 2^{6} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35), (1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32), (1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36) >;
 
Copy content gap:G := Group( (1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35), (1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32), (1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35)', '(1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32)', '(1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20222299084642787189074707752699398951410012891971508995612944121748629339474933731027944828861607271076358113382674990116289261392120589488164076962053283936328270873350951283647980016420650449554966085124772883720014146527884502780657626163396746836784134817519183916717790581273745333142242506445388314156257585504260621667985462489739118857642981545215,944784)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 

Group information

Description:$C_3^8.C_{12}:D_6$
Order: \(944784\)\(\medspace = 2^{4} \cdot 3^{10} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8.C_6^2.C_2^4$, of order \(3779136\)\(\medspace = 2^{6} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 10
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 1719 32804 5832 516600 26244 177876 131220 52488 944784
Conjugacy classes   1 7 625 2 643 14 27 20 2 1341
Divisions 1 7 335 2 347 7 15 10 1 725
Autjugacy classes 1 7 151 2 167 6 9 8 1 352

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{6}=b^{6}=c^{12}=d^{3}=e^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, -2, -3, -2, -3, -2, -2, -3, -3, 3, 3, 3, 3, 3, 3, 28, 27404750, 8966302, 114, 9113667, 18781409, 54429484, 16860078, 4508732, 388336, 200, 44483045, 3305251, 12798609, 5425607, 243, 25175814, 3241090, 2096856, 19208455, 14482979, 6918961, 533631, 89453, 102060008, 16529220, 911786, 1572544, 1034286, 94711689, 2338597, 10342131, 178145, 1706119, 44839882, 421382, 7257148, 2489322, 1476632, 101243531, 13462887, 1493909, 1177411, 1041345, 101110476, 16851784, 6833790, 2841452, 530794, 89837005, 7437065, 13589911, 1345413, 198827]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.8, G.9, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(20222299084642787189074707752699398951410012891971508995612944121748629339474933731027944828861607271076358113382674990116289261392120589488164076962053283936328270873350951283647980016420650449554966085124772883720014146527884502780657626163396746836784134817519183916717790581273745333142242506445388314156257585504260621667985462489739118857642981545215,944784); a := G.1; b := G.3; c := G.5; d := G.8; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20222299084642787189074707752699398951410012891971508995612944121748629339474933731027944828861607271076358113382674990116289261392120589488164076962053283936328270873350951283647980016420650449554966085124772883720014146527884502780657626163396746836784134817519183916717790581273745333142242506445388314156257585504260621667985462489739118857642981545215,944784)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20222299084642787189074707752699398951410012891971508995612944121748629339474933731027944828861607271076358113382674990116289261392120589488164076962053283936328270873350951283647980016420650449554966085124772883720014146527884502780657626163396746836784134817519183916717790581273745333142242506445388314156257585504260621667985462489739118857642981545215,944784)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14;
 
Permutation group:Degree $36$ $\langle(1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35), (1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32), (1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36) >;
 
Copy content gap:G := Group( (1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35), (1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32), (1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36) );
 
Copy content sage:G = PermutationGroup(['(1,30,3,28,2,29)(4,26)(5,25)(6,27)(7,23)(8,22)(9,24)(10,20)(11,19)(12,21)(13,17)(14,18)(15,16)(31,36,32,34,33,35)', '(1,28)(2,30)(3,29)(4,15,6,13,5,14)(7,36)(8,34)(9,35)(10,19,11,21,12,20)(16,27,17,25,18,26)(22,31,23,33,24,32)', '(1,33)(2,32)(3,31)(4,30,6,29,5,28)(7,26)(8,25)(9,27)(10,23,12,22,11,24)(13,21,15,19,14,20)(34,35,36)'])
 
Transitive group: 36T35992 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^9$ . $(S_3\times D_4)$ (2) $(C_3^8.D_6)$ . $D_6$ $C_3^8$ . $(D_6:D_6)$ $(C_3^8.D_{12})$ . $C_6$ all 104

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 128 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_3$ $G/Z \simeq$ $C_3^7.C_6.C_6.C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^8.C_6$ $G/G' \simeq$ $C_2^2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^5$ $G/\Phi \simeq$ $C_3^4.(C_6\times D_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^9.C_3$ $G/\operatorname{Fit} \simeq$ $C_2\times D_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8.C_{12}:D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^4$ $G/\operatorname{soc} \simeq$ $C_3^5.C_6.C_2^3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^9.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^8.C_{12}:D_6$ $\rhd$ $C_3^8.C_6$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8.C_{12}:D_6$ $\rhd$ $C_3^8.C_3^2.C_2^3$ $\rhd$ $C_3^8.C_6^2$ $\rhd$ $C_3^9.C_6$ $\rhd$ $C_3^8.C_6$ $\rhd$ $C_3^8.C_3$ $\rhd$ $C_3^8$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_3^5$ $\rhd$ $C_3^4$ $\rhd$ $C_3^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8.C_{12}:D_6$ $\rhd$ $C_3^8.C_6$ $\rhd$ $C_3^8.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1341 \times 1341$ character table is not available for this group.

Rational character table

The $725 \times 725$ rational character table is not available for this group.