Properties

Label 93312.cl
Order \( 2^{7} \cdot 3^{6} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{10} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3^{5} \)
Perm deg. $30$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30), (1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30), (1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29), (1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28) >;
 
Copy content gap:G := Group( (1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30), (1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30), (1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29), (1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28) );
 
Copy content sage:G = PermutationGroup(['(1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30)', '(1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30)', '(1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29)', '(1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(83653592321549767217687766029954780498622756788208068263977960468513988549848473933830876895436732623347663956887209204277029447594655438756280309755196383027615385412072308749731573636208644453173650773,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 

Group information

Description:$(C_3^3\times C_6^2).\GL(2,\mathbb{Z}/4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_6^4.C_3^5.D_6.C_2^4$, of order \(60466176\)\(\medspace = 2^{10} \cdot 3^{10} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 711 2834 4536 28206 5184 36288 15552 93312
Conjugacy classes   1 16 50 7 2594 6 56 18 2748
Divisions 1 16 33 7 1344 6 28 12 1447
Autjugacy classes 1 9 9 3 80 1 6 2 111

Minimal presentations

Permutation degree:$30$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{6}=c^{6}=d^{6}=e^{6}=f^{6}=g^{6}=[b,d]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 82446, 261, 66, 314, 3414219, 1557832, 136841, 146, 3939004, 2406317, 594780, 6261845, 114236, 255819, 226, 5844390, 243561, 243028, 9075463, 486766, 237803, 306, 7379432, 486729, 35148, 69091, 386, 1009018, 72121, 41246, 6267467, 205034, 405819, 466, 10513164]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2"]);
 
Copy content gap:G := PcGroupCode(83653592321549767217687766029954780498622756788208068263977960468513988549848473933830876895436732623347663956887209204277029447594655438756280309755196383027615385412072308749731573636208644453173650773,93312); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(83653592321549767217687766029954780498622756788208068263977960468513988549848473933830876895436732623347663956887209204277029447594655438756280309755196383027615385412072308749731573636208644453173650773,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(83653592321549767217687766029954780498622756788208068263977960468513988549848473933830876895436732623347663956887209204277029447594655438756280309755196383027615385412072308749731573636208644453173650773,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 
Permutation group:Degree $30$ $\langle(1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30), (1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30), (1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29), (1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28) >;
 
Copy content gap:G := Group( (1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30), (1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30), (1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29), (1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28) );
 
Copy content sage:G = PermutationGroup(['(1,3,6)(2,4,8)(9,10,13)(12,17,15)(18,19,22,26,24,20,25,23,21)(27,29)(28,30)', '(1,4)(2,3)(5,7)(6,8)(9,11,13,16,10,14)(12,15,17)(18,20,26,22,25,21)(23,24)(27,30)', '(1,2)(3,5)(4,7)(6,8)(9,10,13)(11,12,16,17,14,15)(19,22,23,20,24,21)(25,26)(27,28,30,29)', '(1,4,3,2)(5,6,8,7)(9,12)(10,15)(13,17)(18,21,26,20,25,22)(19,23)(27,29,30,28)'])
 
Transitive group: 36T19477 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^5$ . $D_6$ (4) $(C_2\times C_6^5)$ . $S_3$ (4) $(C_3\times C_6^4)$ . $S_4$ $C_6^4$ . $(C_3:S_4)$ (2) all 81

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 369 normal subgroups (57 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_6$ $G/Z \simeq$ $C_2\times C_2^4.C_3\wr C_3.S_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_6^4.C_3.C_6$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^2\times C_6$ $G/\Phi \simeq$ $C_2\times C_6^2:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2\times C_6^5$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $(C_3^3\times C_6^2).\GL(2,\mathbb{Z}/4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3\times C_6^2$ $G/\operatorname{soc} \simeq$ $C_3^3:D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^5:C_3$

Subgroup diagram and profile

Series

Derived series $(C_3^3\times C_6^2).\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_6^4.C_3.C_6$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $(C_3^3\times C_6^2).\GL(2,\mathbb{Z}/4)$ $\rhd$ $(C_3^2\times C_6^3).S_4$ $\rhd$ $C_6^4.C_3.C_6$ $\rhd$ $C_6^4.C_3^2$ $\rhd$ $C_3\times C_2^4.C_3\wr C_3$ $\rhd$ $C_6^4$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_2^2\times C_6^2$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $(C_3^3\times C_6^2).\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_6^4.C_3.C_6$ $\rhd$ $C_6^4.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_6$ $\lhd$ $C_2\times C_6$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2748 \times 2748$ character table is not available for this group.

Rational character table

The $1447 \times 1447$ rational character table is not available for this group.