Group information
| Description: | $C_2^5.(A_4\times S_4)$ | |
| Order: | \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
|
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
|
| Automorphism group: | $C_2^8.C_3.C_6^2.C_2^4$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \) |
|
| Composition factors: | $C_2$ x 10, $C_3$ x 2 |
|
| Derived length: | $3$ |
|
This group is nonabelian and solvable. Whether it is monomial has not been computed.
Group statistics
| Order | 1 | 2 | 3 | 4 | 6 | 12 | |
|---|---|---|---|---|---|---|---|
| Elements | 1 | 511 | 1088 | 1536 | 3008 | 3072 | 9216 |
| Conjugacy classes | 1 | 43 | 5 | 16 | 31 | 16 | 112 |
| Divisions | 1 | 43 | 3 | 8 | 17 | 4 | 76 |
| Autjugacy classes | 1 | 17 | 3 | 4 | 11 | 2 | 38 |
| Dimension | 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | |
|---|---|---|---|---|---|---|---|---|---|
| Irr. complex chars. | 12 | 6 | 40 | 0 | 20 | 12 | 0 | 22 | 112 |
| Irr. rational chars. | 2 | 5 | 8 | 3 | 18 | 6 | 9 | 25 | 76 |
Minimal presentations
| Permutation degree: | $20$ |
| Transitive degree: | $36$ |
| Rank: | $2$ |
| Inequivalent generating pairs: | not computed |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | 18 | 18 | 18 |
| Arbitrary | not computed | not computed | not computed |
Constructions
| Presentation: |
${\langle a, b, c, d, e, f, g, h, i \mid a^{12}=b^{6}=c^{2}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$
| |||||||
|
| ||||||||
| Permutation group: | Degree $20$
$\langle(1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19)\rangle$
| |||||||
|
| ||||||||
| Transitive group: | 36T7713 | 36T8096 | more information | |||||
| Direct product: | not computed | |||||||
| Semidirect product: | not computed | |||||||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||
| Possibly split product: | $(C_2^5:A_4)$ . $S_4$ (3) | $C_2^7$ . $(S_3\times A_4)$ | $C_2^5$ . $(A_4\times S_4)$ (3) | $(C_2^9.C_3)$ . $S_3$ | all 33 | |||
Elements of the group are displayed as permutations of degree 20.
Homology
| Abelianization: | $C_{12} \simeq C_{4} \times C_{3}$ |
|
| Schur multiplier: | $C_{2}^{5}$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 51 normal subgroups (27 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | a subgroup isomorphic to $C_2$ |
|
| Commutator: | a subgroup isomorphic to 768.1085323 |
|
| Frattini: | a subgroup isomorphic to $C_2^3$ |
|
| Fitting: | not computed |
|
| Radical: | not computed |
|
| Socle: | not computed |
|
| 2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_2^9.C_2$ |
Subgroup diagram and profile
Series
| Derived series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 10 larger groups in the database.
This group is a maximal quotient of 2 larger groups in the database.
Character theory
Complex character table
See the $112 \times 112$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
See the $76 \times 76$ rational character table.