Properties

Label 9216.fp
Order \( 2^{10} \cdot 3^{2} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3 \)
Perm deg. $20$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19) >;
 
Copy content gap:G := Group( (1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20)', '(1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(261469603449067109595500938871569984630179561678766552664772717560559776158347847005084773387186829195553021193256597225122469679892064387705119647526851276254108477705436218307200,9216)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 

Group information

Description:$C_2^5.(A_4\times S_4)$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3.C_6^2.C_2^4$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 511 1088 1536 3008 3072 9216
Conjugacy classes   1 43 5 16 31 16 112
Divisions 1 43 3 8 17 4 76
Autjugacy classes 1 17 3 4 11 2 38

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 9 12 18
Irr. complex chars.   12 6 40 0 20 12 0 22 112
Irr. rational chars. 2 5 8 3 18 6 9 25 76

Minimal presentations

Permutation degree:$20$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 18 18
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{12}=b^{6}=c^{2}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 24, 61, 415875, 88431, 4059, 135, 149764, 46096, 207365, 17753, 8693, 604806, 222282, 150474, 21714, 810, 670471, 1747, 7807, 552104, 262460, 205124, 40868, 9452, 1088649, 88581, 35673, 18765, 5097, 665290, 510862, 155662, 49150, 20650, 1145675, 194423, 286451, 101999, 54059]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.4, G.6, G.7, G.8, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "d", "e", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(261469603449067109595500938871569984630179561678766552664772717560559776158347847005084773387186829195553021193256597225122469679892064387705119647526851276254108477705436218307200,9216); a := G.1; b := G.4; c := G.6; d := G.7; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(261469603449067109595500938871569984630179561678766552664772717560559776158347847005084773387186829195553021193256597225122469679892064387705119647526851276254108477705436218307200,9216)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(261469603449067109595500938871569984630179561678766552664772717560559776158347847005084773387186829195553021193256597225122469679892064387705119647526851276254108477705436218307200,9216)'); a = G.1; b = G.4; c = G.6; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Permutation group:Degree $20$ $\langle(1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19) >;
 
Copy content gap:G := Group( (1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20), (1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5,10,12)(4,8)(6,11)(7,9)(13,14,16,17,18,15)(19,20)', '(1,2,4,7,10,11)(3,6,5,9,8,12)(14,15,17)(16,18,19)'])
 
Transitive group: 36T7713 36T8096 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^5:A_4)$ . $S_4$ (3) $C_2^7$ . $(S_3\times A_4)$ $C_2^5$ . $(A_4\times S_4)$ (3) $(C_2^9.C_3)$ . $S_3$ all 33

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{12} \simeq C_{4} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 51 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to 768.1085323
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $112 \times 112$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $76 \times 76$ rational character table.