Properties

Label 88200.b
Order \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$\card{Z(G)}$ 420
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \cdot 3^{2} \)
Perm deg. $34$
Trans deg. $840$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (20,21)(22,23)(26,27)(29,30)(31,32)(33,34), (16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30), (1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19) >;
 
Copy content gap:G := Group( (20,21)(22,23)(26,27)(29,30)(31,32)(33,34), (16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30), (1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19) );
 
Copy content sage:G = PermutationGroup(['(20,21)(22,23)(26,27)(29,30)(31,32)(33,34)', '(16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30)', '(1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2227573757179060839506597493516326328199070212413579299010560499792999680603,88200)'); a = G.1; b = G.5;
 

Group information

Description:$C_{420}.C_{210}$
Order: \(88200\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(967680\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$ x 2, $C_5$ x 2, $C_7$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105 140 210 420
Elements 1 211 8 212 24 428 48 864 436 1308 192 888 384 1356 1872 1152 2904 2064 6192 3288 9216 7344 19296 28512 88200
Conjugacy classes   1 3 5 4 14 9 27 22 14 39 100 36 198 66 116 588 222 216 636 420 4632 1224 4728 9360 22680
Divisions 1 3 3 2 4 5 5 6 4 7 14 5 18 6 16 26 20 15 28 19 100 27 102 101 537

Minimal presentations

Permutation degree:$34$
Transitive degree:$840$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid a^{210}=b^{420}=1, b^{a}=b^{209} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -3, -5, -7, -2, -2, -3, -5, -7, 18, 64, 155, 1975054, 130, 4740125, 158, 5503686, 249, 6168967, 430, 6123608]); a,b := Explode([G.1, G.5]); AssignNames(~G, ["a", "a2", "a6", "a30", "b", "b2", "b4", "b12", "b60"]);
 
Copy content gap:G := PcGroupCode(2227573757179060839506597493516326328199070212413579299010560499792999680603,88200); a := G.1; b := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2227573757179060839506597493516326328199070212413579299010560499792999680603,88200)'); a = G.1; b = G.5;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2227573757179060839506597493516326328199070212413579299010560499792999680603,88200)'); a = G.1; b = G.5;
 
Permutation group:Degree $34$ $\langle(20,21)(22,23)(26,27)(29,30)(31,32)(33,34), (16,17)(18,19)(20,22,24,23,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (20,21)(22,23)(26,27)(29,30)(31,32)(33,34), (16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30), (1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19) >;
 
Copy content gap:G := Group( (20,21)(22,23)(26,27)(29,30)(31,32)(33,34), (16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30), (1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19) );
 
Copy content sage:G = PermutationGroup(['(20,21)(22,23)(26,27)(29,30)(31,32)(33,34)', '(16,17)(18,19)(20,22,24,23,21)(25,26,27)(28,29,31,33,34,32,30)', '(1,2,3,4,5,6,7)(8,9,10)(11,12,13,14,15)(16,18,17,19)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 4 & 0 \\ 0 & 316 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 2 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{421})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(421) | [[4, 0, 0, 316], [2, 0, 0, 2], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(421)^2, 0*Z(421) ], [ 0*Z(421), Z(421)^418 ]], [[ Z(421), 0*Z(421) ], [ 0*Z(421), Z(421) ]], [[ 0*Z(421), Z(421)^0 ], [ Z(421)^0, 0*Z(421) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(421), 2, 2) G = MatrixGroup([MS([[4, 0], [0, 316]]), MS([[2, 0], [0, 2]]), MS([[0, 1], [1, 0]])])
 
Direct product: $C_4$ $\, \times\, $ $C_3$ $\, \times\, $ $C_5$ $\, \times\, $ $C_7$ $\, \times\, $ $D_{105}$
Semidirect product: $C_{35}^2$ $\,\rtimes\,$ $(S_3\times C_{12})$ $C_{21}^2$ $\,\rtimes\,$ $(D_5\times C_{20})$ $C_{15}^2$ $\,\rtimes\,$ $(D_7\times C_{28})$ $C_7^2$ $\,\rtimes\,$ $(D_{15}\times C_{60})$ all 7
Trans. wreath product: not computed
Possibly split product: $D_{210}$ . $C_{210}$ $C_{420}$ . $D_{105}$ $D_{105}$ . $C_{420}$ (2) $C_{210}$ . $D_{210}$ all 215

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{420} \simeq C_{2} \times C_{4} \times C_{3} \times C_{5} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 9120 subgroups in 1136 conjugacy classes, 232 normal (216 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{420}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{105}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $22680 \times 22680$ character table is not available for this group.

Rational character table

The $537 \times 537$ rational character table is not available for this group.