Properties

Label 88200.a
Order \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
$\card{Z(G)}$ \( 2 \cdot 3 \cdot 5 \cdot 7 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3^{2} \)
Perm deg. $34$
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34), (2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27), (1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27) >;
 
Copy content gap:G := Group( (1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34), (2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27), (1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34)', '(2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27)', '(1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60190464287140086843667550088832446637566346035191057256863805554411,88200)'); a = G.1; b = G.2; c = G.6;
 

Group information

Description:$C_{105}^2:D_4$
Order: \(88200\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(967680\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$ x 2, $C_5$ x 2, $C_7$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105 140 210 420
Elements 1 213 8 210 24 444 48 912 420 1404 192 840 384 1260 2256 1152 3672 1680 8496 2520 9216 5040 37728 10080 88200
Conjugacy classes   1 3 5 1 14 15 27 42 2 81 100 4 198 6 300 588 594 8 1764 12 4632 24 13896 48 22365
Divisions 1 3 3 1 4 8 5 11 1 14 14 1 18 1 39 26 51 1 75 1 100 1 293 1 673

Minimal presentations

Permutation degree:$34$
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\COPlus(2,211)$
Presentation: $\langle a, b, c \mid a^{2}=b^{210}=c^{210}=[a,c]=[b,c]=1, b^{a}=b^{209}c^{57} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -2, -3, -5, -7, -2, -3, -5, -7, 438445, 46, 1303994, 101, 2010531, 210, 583204, 158, 249, 430]); a,b,c := Explode([G.1, G.2, G.6]); AssignNames(~G, ["a", "b", "b2", "b6", "b30", "c", "c2", "c6", "c30"]);
 
Copy content gap:G := PcGroupCode(60190464287140086843667550088832446637566346035191057256863805554411,88200); a := G.1; b := G.2; c := G.6;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60190464287140086843667550088832446637566346035191057256863805554411,88200)'); a = G.1; b = G.2; c = G.6;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(60190464287140086843667550088832446637566346035191057256863805554411,88200)'); a = G.1; b = G.2; c = G.6;
 
Permutation group:Degree $34$ $\langle(1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34), (2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27), (1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27) >;
 
Copy content gap:G := Group( (1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34), (2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27), (1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5)(6,7,8)(9,10,11,12,13)(14,15,16)(17,18,20,22,23,19,21)(24,25)(26,27)(28,29,30,31,32,33,34)', '(2,5)(3,4)(7,8)(18,21)(19,20)(22,23)(25,27)', '(1,3,2,5,4)(6,7,8)(17,19,22,18,21,23,20)(24,26)(25,27)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 2 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 106 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{211})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(211) | [[1, 0, 0, 2], [0, 1, 1, 0], [2, 0, 0, 106]] >;
 
Copy content gap:G := Group([[[ Z(211)^0, 0*Z(211) ], [ 0*Z(211), Z(211) ]], [[ 0*Z(211), Z(211)^0 ], [ Z(211)^0, 0*Z(211) ]], [[ Z(211), 0*Z(211) ], [ 0*Z(211), Z(211)^209 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(211), 2, 2) G = MatrixGroup([MS([[1, 0], [0, 2]]), MS([[0, 1], [1, 0]]), MS([[2, 0], [0, 106]])])
 
Direct product: $C_3$ $\, \times\, $ $C_5$ $\, \times\, $ $C_7$ $\, \times\, $ $(C_{105}:D_4)$
Semidirect product: $C_{105}^2$ $\,\rtimes\,$ $D_4$ $C_{35}^2$ $\,\rtimes\,$ $(C_6\wr C_2)$ $C_7^2$ $\,\rtimes\,$ $(C_{30}\wr C_2)$ $C_5^2$ $\,\rtimes\,$ $(C_{42}\wr C_2)$ all 7
Trans. wreath product: not computed
Possibly split product: $D_{210}$ . $C_{210}$ $C_{210}$ . $D_{210}$ $C_{210}^2$ . $C_2$ $(C_{70}\times C_{210})$ . $S_3$ all 207

Elements of the group are displayed as matrices in $\GL_{2}(\F_{211})$.

Homology

Abelianization: $C_{2} \times C_{210} \simeq C_{2}^{2} \times C_{3} \times C_{5} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 216 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{210}$ $G/Z \simeq$ $D_{210}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{210}$ $G/G' \simeq$ $C_2\times C_{210}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_{210}.C_{210}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{210}^2$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{105}^2:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{105}\times C_{210}$ $G/\operatorname{soc} \simeq$ $C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series $C_{105}^2:D_4$ $\rhd$ $C_{210}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{105}^2:D_4$ $\rhd$ $C_{210}^2$ $\rhd$ $C_{105}\times C_{210}$ $\rhd$ $C_{35}\times C_{210}$ $\rhd$ $C_7\times C_{210}$ $\rhd$ $C_{210}$ $\rhd$ $C_{105}$ $\rhd$ $C_{35}$ $\rhd$ $C_7$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{105}^2:D_4$ $\rhd$ $C_{210}$ $\rhd$ $C_{105}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{210}$ $\lhd$ $C_2\times C_{210}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $22365 \times 22365$ character table is not available for this group.

Rational character table

The $673 \times 673$ rational character table is not available for this group.