Properties

Label 88159684608.x
Order \( 2^{11} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{14} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21), (1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24) >;
 
Copy content gap:G := Group( (1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21), (1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24) );
 
Copy content sage:G = PermutationGroup(['(1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21)', '(1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50050961034154193749185951421345481115228165006195385267952426132753718928482040917908279900729474177962695148044742371429302035211853192885849104987736650865175909271948963695428658440605869562160381492591920918240619351055069303433377165457303297176360655795557540071316764671505498599167758624360587783313280738337150761772139848790050404056204448682656964305301556972436648394053599183872713991880392191554851025522108770722713403020117917285473504228890632016832105522048234165898030687415963230070115497113018820464555455729774065355083459761328139072841383215746074167193787493391032112016122475125413999747211576976828898856331408183814057242315783593032636978121411958865719001662363220636000821349292241849202974570762579378738677445786290691562914377735070418545659669613475990420647536444520989159799095813110032298995546138880883117823480460171241318869077532474282218103444138247474647792156921132221035735165119298533032421943686328154270684833865012730293669942386228979328990941562951691785142885026937683561922836235733705582324501637752930894131972301389715205381883510301046462934091352090669176101710846493366646084836974318159231824964991353642368331858970014839858020753692117003676427335393108140353250551965715380257693880691494211694131903477447726659676795981016623327947082191674052656072383232679378802705689650268455732642532835617856790726534366506392943208589152196898053309081493542030576079668889765009484947263491076153575030509871148434924771395546934195599590487702403175393267403990957985660763162220854375050651215273043720376499173136479515856353241221421466145468194394976848866543174021062047138622169795500078721209682307057363714959735200540594404272107748735306209710006371035653098398175274195979496718380743441397569886246730622157531007321118578061332619398938175292770869899258884363875656974482861955357255535401294750433954694869269975560357609604873879272331516618766171793392313519568504850322245967327109560924639160422515739300956400815579892713279261853263695404693279582656565054306571236404100116348062283382708428367772405352290769088760858092548284653424293952900310020739989278711532888517897189029853544048097188757425207244901073970883541698974013211503056361855057529569756714379523681143014700516723677788264527646813908954635338581701412976540276248255551286571732224370207198803382376428009896295225359024192488437446898106481947804740865344294819925326958780954351047906284883599163869853583690497814368329763411782587997168297976418777306171701624690253396250618239964396783936834001339678545027607378666228946958492014450618049023759810584932976364697606631831747014434621977030374877842252836761118533610599001772565714604886866493137848465284829350937518909942613584639,88159684608)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_8$
Order: \(88159684608\)\(\medspace = 2^{11} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24
Elements 1 719631 96059600 1117679472 1641728304 9183300480 3390724800 14723513856 22039921152 6579475776 29386561536 88159684608
Conjugacy classes   1 6 386 7 1079 8 1530 315 4 1220 30 4586
Divisions 1 6 241 6 693 3 765 157 1 610 6 2489
Autjugacy classes 1 6 160 6 444 3 309 106 1 275 6 1317

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([27, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 54, 136, 733893129704, 2595, 1095637580958, 479905482729, 911034402708, 2739093952324, 2975270445931, 2066686614418, 1420356459820, 382, 9044164644197, 5137630695968, 828480813611, 135571501202, 20377101452, 5066932959150, 5080586648037, 3629664796398, 1766541246396, 544212763404, 212552864700, 546, 12728241502279, 5396987821282, 938297820733, 667745905336, 144515065363, 93141007198, 59994204100, 540957494312, 9877396289543, 148859589734, 841618925, 89957652416, 11090823893, 1044020024, 5863818131, 710, 1807334000649, 906992640036, 466650, 38997, 6651, 17629548507658, 12870225882397, 419038105528, 249524913619, 320878, 11926350586, 5963161150, 874, 2451782504459, 583871473190, 40310849, 20645372, 280055, 27389, 25602670475940, 13885700720151, 7719952979298, 1153594496901, 650311158864, 586519930299, 136044462234, 85849262193, 3172457568, 1038, 9560130360493, 3519951758104, 6181348160803, 3089719860286, 226658495065, 223800923956, 183564145471, 18919066522, 28774053873014, 11413471879481, 8395595568068, 1103107841015, 754433643722, 663377723789, 150253640996, 106598797943, 46775408, 1202, 8483029758735, 4003040767146, 7064399017797, 3531107292000, 259043816571, 255775283862, 209790020913, 21622256844, 21734498015368, 223305600427, 4133250701062, 1874258230273, 128512105324, 45651515938, 111114861577, 1916321560, 540070, 363868, 157345, 60982, 26584, 1366, 38210148734993, 66049639532, 800300072519, 185807618, 72967593005, 463819139, 458675342, 3782110553, 496007, 38491789640490, 16141539648429, 845335616328, 1125214684371, 545898751686, 105790613913, 159768773532, 112235872095, 20425842, 665814780, 59301090, 249687, 9883854, 41976, 1530, 7207568179219, 8857223095726, 451791509833, 452775484900, 91707111487, 52655961754, 21225058741, 7232263408, 17107435, 377032609, 116445943, 19407997, 12737108, 175230978095, 2045631200330, 5714053733, 112217664566, 128619114833, 263070200, 595459235, 43845374, 99243569, 41276, 7310, 26222003748885, 18478590476592, 18080086539, 248818151046, 11992318401, 111436643100, 31612109943, 15104973522, 2392620357, 14427363, 63981273, 10663887, 21364581150742, 13626550021297, 1378902520300, 547810351015, 248670482890, 102420884317, 9524833600, 13242576811, 2666139538, 848276356, 140887858, 24331180, 10579498076183, 10654789102898, 683640663629, 720738342248, 22856307971, 70080298142, 29218973369, 15672637076, 1632960239, 586808357, 185364635, 27022001, 5460110856024, 10135919772051, 2437544469678, 17238225705, 119884390332, 112114368159, 113377984386, 146415324813, 5165459340, 307978548, 638895975, 51330102, 106483029, 1993056, 332610, 20840382141721, 999869292916, 2016244638799, 1055285936746, 318878456965, 168020386720, 283651614043, 143425246750, 9738413809, 2236269031, 1745891197, 727227448, 282895171, 121204942, 6166825, 2536135, 16497296687258, 12216651074261, 10535176789136, 5368194821123, 1118745188486, 517802098337, 66282695144, 119871700955, 30361596362, 5077698164, 516534758, 677410505, 86089472, 112902119, 40451210, 3197906]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.22, G.23, G.24, G.25, G.26, G.27]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(50050961034154193749185951421345481115228165006195385267952426132753718928482040917908279900729474177962695148044742371429302035211853192885849104987736650865175909271948963695428658440605869562160381492591920918240619351055069303433377165457303297176360655795557540071316764671505498599167758624360587783313280738337150761772139848790050404056204448682656964305301556972436648394053599183872713991880392191554851025522108770722713403020117917285473504228890632016832105522048234165898030687415963230070115497113018820464555455729774065355083459761328139072841383215746074167193787493391032112016122475125413999747211576976828898856331408183814057242315783593032636978121411958865719001662363220636000821349292241849202974570762579378738677445786290691562914377735070418545659669613475990420647536444520989159799095813110032298995546138880883117823480460171241318869077532474282218103444138247474647792156921132221035735165119298533032421943686328154270684833865012730293669942386228979328990941562951691785142885026937683561922836235733705582324501637752930894131972301389715205381883510301046462934091352090669176101710846493366646084836974318159231824964991353642368331858970014839858020753692117003676427335393108140353250551965715380257693880691494211694131903477447726659676795981016623327947082191674052656072383232679378802705689650268455732642532835617856790726534366506392943208589152196898053309081493542030576079668889765009484947263491076153575030509871148434924771395546934195599590487702403175393267403990957985660763162220854375050651215273043720376499173136479515856353241221421466145468194394976848866543174021062047138622169795500078721209682307057363714959735200540594404272107748735306209710006371035653098398175274195979496718380743441397569886246730622157531007321118578061332619398938175292770869899258884363875656974482861955357255535401294750433954694869269975560357609604873879272331516618766171793392313519568504850322245967327109560924639160422515739300956400815579892713279261853263695404693279582656565054306571236404100116348062283382708428367772405352290769088760858092548284653424293952900310020739989278711532888517897189029853544048097188757425207244901073970883541698974013211503056361855057529569756714379523681143014700516723677788264527646813908954635338581701412976540276248255551286571732224370207198803382376428009896295225359024192488437446898106481947804740865344294819925326958780954351047906284883599163869853583690497814368329763411782587997168297976418777306171701624690253396250618239964396783936834001339678545027607378666228946958492014450618049023759810584932976364697606631831747014434621977030374877842252836761118533610599001772565714604886866493137848465284829350937518909942613584639,88159684608); a := G.1; b := G.4; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.17; j := G.19; k := G.21; l := G.22; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50050961034154193749185951421345481115228165006195385267952426132753718928482040917908279900729474177962695148044742371429302035211853192885849104987736650865175909271948963695428658440605869562160381492591920918240619351055069303433377165457303297176360655795557540071316764671505498599167758624360587783313280738337150761772139848790050404056204448682656964305301556972436648394053599183872713991880392191554851025522108770722713403020117917285473504228890632016832105522048234165898030687415963230070115497113018820464555455729774065355083459761328139072841383215746074167193787493391032112016122475125413999747211576976828898856331408183814057242315783593032636978121411958865719001662363220636000821349292241849202974570762579378738677445786290691562914377735070418545659669613475990420647536444520989159799095813110032298995546138880883117823480460171241318869077532474282218103444138247474647792156921132221035735165119298533032421943686328154270684833865012730293669942386228979328990941562951691785142885026937683561922836235733705582324501637752930894131972301389715205381883510301046462934091352090669176101710846493366646084836974318159231824964991353642368331858970014839858020753692117003676427335393108140353250551965715380257693880691494211694131903477447726659676795981016623327947082191674052656072383232679378802705689650268455732642532835617856790726534366506392943208589152196898053309081493542030576079668889765009484947263491076153575030509871148434924771395546934195599590487702403175393267403990957985660763162220854375050651215273043720376499173136479515856353241221421466145468194394976848866543174021062047138622169795500078721209682307057363714959735200540594404272107748735306209710006371035653098398175274195979496718380743441397569886246730622157531007321118578061332619398938175292770869899258884363875656974482861955357255535401294750433954694869269975560357609604873879272331516618766171793392313519568504850322245967327109560924639160422515739300956400815579892713279261853263695404693279582656565054306571236404100116348062283382708428367772405352290769088760858092548284653424293952900310020739989278711532888517897189029853544048097188757425207244901073970883541698974013211503056361855057529569756714379523681143014700516723677788264527646813908954635338581701412976540276248255551286571732224370207198803382376428009896295225359024192488437446898106481947804740865344294819925326958780954351047906284883599163869853583690497814368329763411782587997168297976418777306171701624690253396250618239964396783936834001339678545027607378666228946958492014450618049023759810584932976364697606631831747014434621977030374877842252836761118533610599001772565714604886866493137848465284829350937518909942613584639,88159684608)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50050961034154193749185951421345481115228165006195385267952426132753718928482040917908279900729474177962695148044742371429302035211853192885849104987736650865175909271948963695428658440605869562160381492591920918240619351055069303433377165457303297176360655795557540071316764671505498599167758624360587783313280738337150761772139848790050404056204448682656964305301556972436648394053599183872713991880392191554851025522108770722713403020117917285473504228890632016832105522048234165898030687415963230070115497113018820464555455729774065355083459761328139072841383215746074167193787493391032112016122475125413999747211576976828898856331408183814057242315783593032636978121411958865719001662363220636000821349292241849202974570762579378738677445786290691562914377735070418545659669613475990420647536444520989159799095813110032298995546138880883117823480460171241318869077532474282218103444138247474647792156921132221035735165119298533032421943686328154270684833865012730293669942386228979328990941562951691785142885026937683561922836235733705582324501637752930894131972301389715205381883510301046462934091352090669176101710846493366646084836974318159231824964991353642368331858970014839858020753692117003676427335393108140353250551965715380257693880691494211694131903477447726659676795981016623327947082191674052656072383232679378802705689650268455732642532835617856790726534366506392943208589152196898053309081493542030576079668889765009484947263491076153575030509871148434924771395546934195599590487702403175393267403990957985660763162220854375050651215273043720376499173136479515856353241221421466145468194394976848866543174021062047138622169795500078721209682307057363714959735200540594404272107748735306209710006371035653098398175274195979496718380743441397569886246730622157531007321118578061332619398938175292770869899258884363875656974482861955357255535401294750433954694869269975560357609604873879272331516618766171793392313519568504850322245967327109560924639160422515739300956400815579892713279261853263695404693279582656565054306571236404100116348062283382708428367772405352290769088760858092548284653424293952900310020739989278711532888517897189029853544048097188757425207244901073970883541698974013211503056361855057529569756714379523681143014700516723677788264527646813908954635338581701412976540276248255551286571732224370207198803382376428009896295225359024192488437446898106481947804740865344294819925326958780954351047906284883599163869853583690497814368329763411782587997168297976418777306171701624690253396250618239964396783936834001339678545027607378666228946958492014450618049023759810584932976364697606631831747014434621977030374877842252836761118533610599001772565714604886866493137848465284829350937518909942613584639,88159684608)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27;
 
Permutation group:Degree $36$ $\langle(1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21), (1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24) >;
 
Copy content gap:G := Group( (1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21), (1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24) );
 
Copy content sage:G = PermutationGroup(['(1,6,32,23,25,17,8,36,3,4,33,24,26,18,7,34,2,5,31,22,27,16,9,35)(10,13,30,19,11,15,29,20,12,14,28,21)', '(1,4,8,34,25,18,21,11)(2,5,7,35,26,17,19,10)(3,6,9,36,27,16,20,12)(13,28,32,23,14,29,33,22,15,30,31,24)'])
 
Transitive group: 36T115877 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^4.A_4^2)$ . $F_9$ (2) $C_3^{12}$ . $(C_2^8.C_3^2:F_9)$ $(C_3^{12}.C_2^6.C_2^2.C_3^4)$ . $C_8$ $(C_3^{12}.C_2^6.C_2^2)$ . $(C_3^2:F_9)$ all 6

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 9 normal subgroups (7 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr C_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4586 \times 4586$ character table is not available for this group.

Rational character table

The $2489 \times 2489$ rational character table is not available for this group.