Properties

Label 839808.qk
Order \( 2^{7} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{8} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 5 \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36), (1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34), (1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31) >;
 
Copy content gap:G := Group( (1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36), (1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34), (1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31) );
 
Copy content sage:G = PermutationGroup(['(1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36)', '(1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34)', '(1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37644500002253878924210271251038813467509862068638075311680212856996781714443934946083363157362031353812425823857588390354802786251838356927598825188103876799654051083282746977848831467775694247400698911820482068364927807069698385837346039969976112086553170001129600173115981458108529584583166555524935622324557774496941620818588296912830865396496500798247436984743363542919837614443907043589695720606735171831361996500167802492942127087107503484503366213417561812771929705800266784910049535,839808)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 

Group information

Description:$C_3^8:D_8.C_8$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(33592320\)\(\medspace = 2^{10} \cdot 3^{8} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16
Elements 1 7371 6560 105300 64800 209952 25920 419904 839808
Conjugacy classes   1 4 60 9 15 14 10 28 141
Divisions 1 4 60 6 15 6 5 5 102
Autjugacy classes 1 3 5 5 2 7 1 8 32

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{8}=d^{3}=e^{3}=f^{3}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, -2, -2, -2, -2, -2, -2, -2, -3, 3, 3, 3, 3, 3, 3, 3, 30, 76, 975632, 40817763, 22759938, 6165273, 1985328, 58035604, 8083819, 6177934, 4140499, 214, 3879365, 30304820, 228275, 9281930, 260, 46455366, 15103221, 17073876, 1178571, 26757127, 675862, 633637, 7770292, 84547, 79282, 577, 7827848, 34914263, 25012838, 356453, 6256508, 2185463, 1718, 27667209, 13824024, 8683239, 5083254, 2182869, 859884, 5499, 359050, 15544345, 4123720, 12373735, 712870, 196105, 17920, 16957451, 47577626, 33356201, 466616, 8107271, 2914646, 58421, 87085452, 1984347, 2770602, 11338137, 84312, 210687, 189642, 69108493, 51381148, 39889963, 17304058, 9876793, 3115648, 612463, 15177614, 74275229, 42199244, 6242459, 671474, 2615489, 1968404]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.4, G.5, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "c4", "d", "e", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(37644500002253878924210271251038813467509862068638075311680212856996781714443934946083363157362031353812425823857588390354802786251838356927598825188103876799654051083282746977848831467775694247400698911820482068364927807069698385837346039969976112086553170001129600173115981458108529584583166555524935622324557774496941620818588296912830865396496500798247436984743363542919837614443907043589695720606735171831361996500167802492942127087107503484503366213417561812771929705800266784910049535,839808); a := G.1; b := G.4; c := G.5; d := G.8; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37644500002253878924210271251038813467509862068638075311680212856996781714443934946083363157362031353812425823857588390354802786251838356927598825188103876799654051083282746977848831467775694247400698911820482068364927807069698385837346039969976112086553170001129600173115981458108529584583166555524935622324557774496941620818588296912830865396496500798247436984743363542919837614443907043589695720606735171831361996500167802492942127087107503484503366213417561812771929705800266784910049535,839808)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37644500002253878924210271251038813467509862068638075311680212856996781714443934946083363157362031353812425823857588390354802786251838356927598825188103876799654051083282746977848831467775694247400698911820482068364927807069698385837346039969976112086553170001129600173115981458108529584583166555524935622324557774496941620818588296912830865396496500798247436984743363542919837614443907043589695720606735171831361996500167802492942127087107503484503366213417561812771929705800266784910049535,839808)'); a = G.1; b = G.4; c = G.5; d = G.8; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15;
 
Permutation group:Degree $36$ $\langle(1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36), (1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34), (1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31) >;
 
Copy content gap:G := Group( (1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36), (1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34), (1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31) );
 
Copy content sage:G = PermutationGroup(['(1,27,2,23,9,22,3,19,4,24,6,25,8,26,5,20)(7,21)(10,34,13,28,11,29,12,33,17,35,14,32,16,31,18,30)(15,36)', '(1,12,6,16,4,10,8,14,5,13,3,18,2,15,7,11)(9,17)(19,28)(20,33,27,32,24,29,22,31,21,35,23,36,26,30,25,34)', '(1,9,7,5,8,3,2,4)(10,18,16,14,17,12,11,13)(19,25,21,22,23,26,24,20)(28,33,34,35,29,36,32,31)'])
 
Transitive group: 36T34926 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8:D_8)$ . $C_8$ $(C_3^8:Q_{16})$ . $C_8$ $(C_3^8.C_{16})$ . $D_4$ (2) $(C_3^8.\SD_{16})$ . $C_8$ (2) all 30

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 47 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_{16}.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $141 \times 141$ character table is not available for this group.

Rational character table

The $102 \times 102$ rational character table is not available for this group.