Properties

Label 839808.jf
Order \( 2^{7} \cdot 3^{8} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $21$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20), (2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20) >;
 
Copy content gap:G := Group( (1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20), (2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20)', '(2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(75680066246735619360368439549808902576491499449845444053607178675407940193151906627003405801949240494229117083137667325110690450800868385659691827023484932768242091599157679038787243119059900172218541599862532135949422065911168531874401676113448192184686708681526672244239665255813411159581308529832415997009152756304479876845479436465648127087439978823226172084582765135277546613191808968245917077433477805825840316881958568798526293781558298815682843817026784170671,839808)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15;
 

Group information

Description:$C_3^7.C_2^5:C_{12}$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^7.C_2^7:D_6$, of order \(3359232\)\(\medspace = 2^{9} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 8319 9962 31104 277206 62208 388800 62208 839808
Conjugacy classes   1 15 31 8 169 8 34 4 270
Divisions 1 15 29 4 165 4 14 2 234
Autjugacy classes 1 15 27 4 119 4 11 2 183

Minimal presentations

Permutation degree:$21$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{12}=c^{6}=d^{6}=e^{6}=f^{6}=g^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 30, 76, 43203, 21226338, 686733, 3214128, 53591404, 2973169, 8161459, 3631399, 214, 27064805, 959060, 4989635, 4433090, 28569246, 9578541, 16808436, 5630991, 2770176, 306, 48522247, 3853462, 8399557, 3116212, 1558147, 109605968, 27086423, 7899158, 3745493, 2998688, 1752113, 778508, 146318, 398, 121312809, 25189224, 8190039, 7804854, 410469, 29579230, 5595505, 6949840, 8624935, 3813550, 2049385, 956440, 181285, 11020, 6580, 490, 56039051, 8398106, 1399721, 155591, 26021, 4451, 115249692, 2021787, 9097962, 2502, 59209933, 3265948, 1088683, 1633033, 272263, 45493, 7723, 7020014, 36158429, 22744844, 154034, 24464]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.4, G.5, G.7, G.9, G.11, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(75680066246735619360368439549808902576491499449845444053607178675407940193151906627003405801949240494229117083137667325110690450800868385659691827023484932768242091599157679038787243119059900172218541599862532135949422065911168531874401676113448192184686708681526672244239665255813411159581308529832415997009152756304479876845479436465648127087439978823226172084582765135277546613191808968245917077433477805825840316881958568798526293781558298815682843817026784170671,839808); a := G.1; b := G.4; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(75680066246735619360368439549808902576491499449845444053607178675407940193151906627003405801949240494229117083137667325110690450800868385659691827023484932768242091599157679038787243119059900172218541599862532135949422065911168531874401676113448192184686708681526672244239665255813411159581308529832415997009152756304479876845479436465648127087439978823226172084582765135277546613191808968245917077433477805825840316881958568798526293781558298815682843817026784170671,839808)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(75680066246735619360368439549808902576491499449845444053607178675407940193151906627003405801949240494229117083137667325110690450800868385659691827023484932768242091599157679038787243119059900172218541599862532135949422065911168531874401676113448192184686708681526672244239665255813411159581308529832415997009152756304479876845479436465648127087439978823226172084582765135277546613191808968245917077433477805825840316881958568798526293781558298815682843817026784170671,839808)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15;
 
Permutation group:Degree $21$ $\langle(1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20), (2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 21 | (1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20), (2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20) >;
 
Copy content gap:G := Group( (1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20), (2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,5,8,12,15,7,11,9,4,6)(10,13,16,14,17,18)(19,20)', '(2,4,7,8)(5,9)(6,10,12)(11,14)(16,18)(19,21,20)'])
 
Transitive group: 36T34387 36T34395 more information
Direct product: $S_3$ $\, \times\, $ $(C_3^6.C_2^4:C_{12})$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^7.C_2^6)$ . $C_6$ (3) $(C_3^7.C_2^5)$ . $C_{12}$ (2) $C_3^7$ . $(C_2^5:C_{12})$ $((C_3:S_3)^3.A_4)$ . $D_6$ all 35

Elements of the group are displayed as permutations of degree 21.

Homology

Abelianization: $C_{2} \times C_{12} \simeq C_{2} \times C_{4} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 43 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^7.C_2^5:C_{12}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^7.C_2^4$ $G/G' \simeq$ $C_2\times C_{12}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^7.C_2^5:C_{12}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^7$ $G/\operatorname{Fit} \simeq$ $C_2^5:C_{12}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^7.C_2^5:C_{12}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^7$ $G/\operatorname{soc} \simeq$ $C_2^5:C_{12}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\times C_3^6.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^7.C_2^5:C_{12}$ $\rhd$ $C_3^7.C_2^4$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^7.C_2^5:C_{12}$ $\rhd$ $C_3^4.D_6\wr C_3$ $\rhd$ $C_3^7.C_2^3:A_4$ $\rhd$ $C_3^7.C_2^2:A_4$ $\rhd$ $C_3^7.C_2^4$ $\rhd$ $C_3^7:C_2^2$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^7.C_2^5:C_{12}$ $\rhd$ $C_3^7.C_2^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $270 \times 270$ character table is not available for this group.

Rational character table

The $234 \times 234$ rational character table is not available for this group.