Properties

Label 839...000.a
Order \( 2^{33} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Exponent \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{34} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30), (1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26) >;
 
Copy content gap:G := Group( (1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30), (1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26) );
 
Copy content sage:G = PermutationGroup(['(1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30)', '(1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26)'])
 

Group information

Description:$C_2^{18}.A_{18}$
Order: \(839\!\cdots\!000\)\(\medspace = 2^{33} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24504480\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(167\!\cdots\!000\)\(\medspace = 2^{34} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $A_{18}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 24 26 28 30 32 33 34 35 36 39 40 42 44 45 48 52 55 56 60 63 65 66 70 72 77 78 80 84 88 90 105 110 112 120 126 130 132 140 154 168 180 210 240 280
Elements 1 1183874212863 88611696649088 53495631152225280 5828395825050624 1119890379486026880 11149713498193920 5421283663050178560 2689299573011251200 4752002430927424512 118254521548800 41163807788024463360 16810335063244800 8738221152924057600 10554241743268134912 34575257010438144000 24681527245799424000 15570749002294886400 19848420807542046720 368788984971264000 824825287802880000 61697027883191500800 5093531524163174400 40232063409743462400 56939413782328197120 26224122698661888000 562891522572288000 74044581737398272000 299964419360686080 22454405060729241600 1344826805059584000 24013803785488957440 9223721228235571200 11920055772119040000 801292638014668800 13986198772619673600 12103441245536256000 953604461769523200 24163655915195596800 42202019308649840640 832511831703552000 6455168664286003200 11622054377816064000 5311165326321254400 10198269938368512000 5449168352968704000 20172402075893760000 17482748465774592000 17365676489441280000 9536044617695232000 14350422698989977600 208127957925888000 14304066926542848000 7492606485331968000 17045679754130227200 12487677475553280000 19365505992858009600 4768022308847616000 5244824539732377600 16347505058906112000 9365758106664960000 3496549693154918400 5119947764976844800 3496549693154918400 2997042594132787200 839171926357180416000
Conjugacy classes   1 54 6 304 3 403 2 333 5 136 1 1254 1 67 10 90 2 111 333 4 23 697 15 129 363 2 2 6 2 104 1 178 156 24 3 104 8 1 66 475 1 2 38 54 32 2 15 26 152 8 53 2 15 8 144 15 6 8 32 6 40 8 46 8 8 6208
Divisions 1 54 6 304 3 403 2 333 5 136 1 1254 1 67 9 90 1 111 333 4 23 697 15 129 360 2 2 3 2 104 1 178 152 24 2 104 8 1 66 475 1 1 34 50 32 1 11 26 152 8 38 2 11 8 144 11 3 8 32 3 40 8 42 8 8 6148
Autjugacy classes 1 44 6 244 3 312 2 272 5 105 1 967 1 52 9 75 1 82 256 4 17 542 11 98 270 2 2 2 2 78 1 137 113 18 2 81 6 1 50 357 1 1 25 37 24 1 8 20 114 6 28 2 8 6 108 8 2 6 24 2 30 6 31 6 6 4742

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $36$ $\langle(1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30), (1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26) >;
 
Copy content gap:G := Group( (1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30), (1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26) );
 
Copy content sage:G = PermutationGroup(['(1,22,7,27,33,32,23,35,9,25,5,3,13,11,18,2,21,8,28,34,31,24,36,10,26,6,4,14,12,17)(15,19,29)(16,20,30)', '(1,13,15,8,28,35)(2,14,16,7,27,36)(3,5,30,10,19,31,4,6,29,9,20,32)(11,18,21,24,34)(12,17,22,23,33)(25,26)'])
 
Transitive group: 36T121215 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{18}$ . $A_{18}$ $(C_2^{17}.A_{18})$ . $C_2$ $C_2^{17}$ . $(C_2.A_{18})$ $C_2$ . $(C_2^{17}.A_{18})$ more information

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 6 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{17}.A_{18}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: not computed
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^6.C_2^6.C_2^6$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6208 \times 6208$ character table is not available for this group.

Rational character table

The $6148 \times 6148$ rational character table is not available for this group.