Properties

Label 83232.bx
Order \( 2^{5} \cdot 3^{2} \cdot 17^{2} \)
Exponent \( 2^{3} \cdot 3 \cdot 17 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \cdot 3 \cdot 17 \)
$\card{Z(G)}$ 408
$\card{\Aut(G)}$ \( 2^{15} \cdot 3 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2^{13} \)
Perm deg. $56$
Trans deg. $816$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 56 | (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39), (18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39), (18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39)', '(18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)', '(1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17079593719041889088261988450136134227704162913121908271879365328927,83232)'); a = G.1; b = G.2; c = G.5;
 

Group information

Description:$C_{408}.D_{102}$
Order: \(83232\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 17^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1671168\)\(\medspace = 2^{15} \cdot 3 \cdot 17 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 2, $C_{17}$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 17 24 34 51 68 102 136 204 408
Elements 1 207 8 208 432 416 440 288 880 4128 2304 4416 13440 8832 15744 31488 83232
Conjugacy classes   1 4 5 5 17 10 22 152 44 472 1168 624 3536 1248 4704 9408 21420
Divisions 1 4 3 4 9 4 8 10 8 30 38 22 112 22 78 78 431

Minimal presentations

Permutation degree:$56$
Transitive degree:$816$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b, c \mid a^{2}=b^{102}=c^{408}=[a,c]=[b,c]=1, b^{a}=b^{101}c^{396} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -2, -3, -17, -2, -2, -2, -3, -17, 1457749, 46, 2120474, 101, 2474499, 130, 158, 186, 286]); a,b,c := Explode([G.1, G.2, G.5]); AssignNames(~G, ["a", "b", "b2", "b6", "c", "c2", "c4", "c8", "c24"]);
 
Copy content gap:G := PcGroupCode(17079593719041889088261988450136134227704162913121908271879365328927,83232); a := G.1; b := G.2; c := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17079593719041889088261988450136134227704162913121908271879365328927,83232)'); a = G.1; b = G.2; c = G.5;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17079593719041889088261988450136134227704162913121908271879365328927,83232)'); a = G.1; b = G.2; c = G.5;
 
Permutation group:Degree $56$ $\langle(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 56 | (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39), (18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39), (18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(20,23)(22,27)(26,30)(29,32)(34,35)(36,38)(37,39)', '(18,19,21,25,24,28,31,33)(20,22,26,29,23,27,30,32)(34,36,37)(35,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)', '(1,2,4,6,8,10,12,14,16,17,15,13,11,9,7,5,3)(18,20,24,23)(19,22,28,27)(21,26,31,30)(25,29,33,32)(34,37,36)(35,38,39)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 32 & 0 \\ 0 & 294 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{409})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(409) | [[21, 0, 0, 21], [32, 0, 0, 294], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(409), 0*Z(409) ], [ 0*Z(409), Z(409) ]], [[ Z(409)^2, 0*Z(409) ], [ 0*Z(409), Z(409)^406 ]], [[ 0*Z(409), Z(409)^0 ], [ Z(409)^0, 0*Z(409) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(409), 2, 2) G = MatrixGroup([MS([[21, 0], [0, 21]]), MS([[32, 0], [0, 294]]), MS([[0, 1], [1, 0]])])
 
Direct product: not computed
Semidirect product: $C_{17}^2$ $\,\rtimes\,$ $(C_{24}.D_6)$ $C_3^2$ $\,\rtimes\,$ $(C_{136}.D_{34})$ $C_{51}^2$ $\,\rtimes\,$ $(\OD_{16}:C_2)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{408}$ . $D_{102}$ (2) $D_{204}$ . $C_{204}$ $(C_{34}\times C_{408})$ . $S_3$ $C_{408}$ . $(S_3\times C_{34})$ (2) all 168

Elements of the group are displayed as matrices in $\GL_{2}(\F_{409})$.

Homology

Abelianization: $C_{2}^{2} \times C_{204} \simeq C_{2}^{2} \times C_{4} \times C_{3} \times C_{17}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 220 normal subgroups (164 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{408}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{102}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $\OD_{16}:C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $21420 \times 21420$ character table is not available for this group.

Rational character table

The $431 \times 431$ rational character table is not available for this group.