Properties

Label 8257536.d
Order \( 2^{17} \cdot 3^{2} \cdot 7 \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. $42$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18), (1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39), (1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36) >;
 
Copy content gap:G := Group( (1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18), (1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39), (1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36) );
 
Copy content sage:G = PermutationGroup(['(1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18)', '(1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39)', '(1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26813510079655346794119481125610189527766754889762725826169063383873352468840530595593673980129040811299194397102450249256139000378170887007964841707316209636967017434767678348579656774293776250779248901031441689902150039017728268661409409193140227385258798681668199962250129470938398028839947952202087424853967916480929394007134395592662538258904743943382264785850427763225859661250776644305831320490118349329055884978878682279577472095572330640225157312154181627164893070316339183236335424048945753310043407829393439560307847754795774568011527515049439344887606890321235392413582139743954528077840732469154787667661961651887841592756669977782276556991262211460584458550089251621940559542934929057206949499051387481988437761372792474581239680264629734746832896,8257536)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 

Group information

Description:$C_2^{14}.D_{42}.C_6$
Order: \(8257536\)\(\medspace = 2^{17} \cdot 3^{2} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times C_2^{14}.(S_3\times F_7)$, of order \(16515072\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_3$ x 2, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 12 14 21 28 42
Elements 1 42495 65024 1006080 2523648 24576 3440640 466944 196608 294912 196608 8257536
Conjugacy classes   1 195 5 110 79 1 56 5 1 2 1 456
Divisions 1 195 3 110 41 1 28 5 1 2 1 388
Autjugacy classes 1 191 5 55 68 1 28 4 1 1 1 356

Minimal presentations

Permutation degree:not computed
Transitive degree:$42$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 21 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid a^{6}=b^{14}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, -2, -3, -2, -7, -2, -3, -2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 40, 291293642, 44671522, 162, 156930243, 317784023, 56859604, 159293424, 67509444, 27330164, 284, 627258245, 304768825, 110362605, 59609825, 112331526, 474586586, 34045246, 28018266, 2052206, 1025746, 323688967, 630645147, 168457007, 45837187, 28887, 13547, 38918888, 30436588, 9676848, 20275988, 2626648, 1315548, 528494409, 609033629, 252571249, 117381669, 2950889, 1470709, 208010890, 95689470, 53444210, 97315750, 33090, 6050, 1976244491, 802751071, 197870451, 153871271, 275131, 114591, 2020505772, 535298432, 230805172, 16773192, 3503852, 1702072, 385822093, 331843713, 97561013, 110696953, 4178253, 1981673, 1395424814, 1125003634, 32835654, 188218874, 162094, 311514, 793820175, 852445475, 181009975, 81217995, 28068575, 14525875, 495401776, 1239275556, 96647096, 206560276, 23519256, 10715216, 2154237137, 401073157, 302369817, 147208397, 226897, 2325357, 2999777778, 1498260998, 92887258, 76065438, 36835778, 13748518, 1781337619, 1515729639, 480950459, 256737679, 2541699, 11101319]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.5, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(26813510079655346794119481125610189527766754889762725826169063383873352468840530595593673980129040811299194397102450249256139000378170887007964841707316209636967017434767678348579656774293776250779248901031441689902150039017728268661409409193140227385258798681668199962250129470938398028839947952202087424853967916480929394007134395592662538258904743943382264785850427763225859661250776644305831320490118349329055884978878682279577472095572330640225157312154181627164893070316339183236335424048945753310043407829393439560307847754795774568011527515049439344887606890321235392413582139743954528077840732469154787667661961651887841592756669977782276556991262211460584458550089251621940559542934929057206949499051387481988437761372792474581239680264629734746832896,8257536); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15; m := G.16; n := G.17; o := G.18; p := G.19; q := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26813510079655346794119481125610189527766754889762725826169063383873352468840530595593673980129040811299194397102450249256139000378170887007964841707316209636967017434767678348579656774293776250779248901031441689902150039017728268661409409193140227385258798681668199962250129470938398028839947952202087424853967916480929394007134395592662538258904743943382264785850427763225859661250776644305831320490118349329055884978878682279577472095572330640225157312154181627164893070316339183236335424048945753310043407829393439560307847754795774568011527515049439344887606890321235392413582139743954528077840732469154787667661961651887841592756669977782276556991262211460584458550089251621940559542934929057206949499051387481988437761372792474581239680264629734746832896,8257536)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26813510079655346794119481125610189527766754889762725826169063383873352468840530595593673980129040811299194397102450249256139000378170887007964841707316209636967017434767678348579656774293776250779248901031441689902150039017728268661409409193140227385258798681668199962250129470938398028839947952202087424853967916480929394007134395592662538258904743943382264785850427763225859661250776644305831320490118349329055884978878682279577472095572330640225157312154181627164893070316339183236335424048945753310043407829393439560307847754795774568011527515049439344887606890321235392413582139743954528077840732469154787667661961651887841592756669977782276556991262211460584458550089251621940559542934929057206949499051387481988437761372792474581239680264629734746832896,8257536)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15; m = G.16; n = G.17; o = G.18; p = G.19; q = G.20;
 
Permutation group:Degree $42$ $\langle(1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18), (1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39), (1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36) >;
 
Copy content gap:G := Group( (1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18), (1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39), (1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36) );
 
Copy content sage:G = PermutationGroup(['(1,33,20,9,37,27,13,4,31,21,8,40,25,16,2,34,19,10,38,28,14,3,32,22,7,39,26,15)(5,35,24,12,41,29,17)(6,36,23,11,42,30,18)', '(1,25,2,26)(3,30)(4,29)(5,28,6,27)(7,19,8,20)(9,23,10,24)(11,22)(12,21)(15,18)(16,17)(31,38)(32,37)(33,41)(34,42)(35,40)(36,39)', '(1,27,17,19,39,12)(2,28,18,20,40,11)(3,30,14,21,42,8)(4,29,13,22,41,7)(5,26,16,24,38,9)(6,25,15,23,37,10)(31,34,35)(32,33,36)'])
 
Transitive group: 42T2565 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^{12}.(S_4\times F_7))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{15}$ . $(S_3\times F_7)$ $C_2^{13}$ . $(S_4\times F_7)$ $(C_2^{14}.D_6)$ . $F_7$ $C_2^{14}$ . $(D_6\times F_7)$ all 45
Aut. group: $\Aut(C_2^{14}.C_{42}.C_6)$

Elements of the group are displayed as permutations of degree 42.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 65 normal subgroups (35 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^{12}.(S_4\times F_7)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{14}.C_{21}$ $G/G' \simeq$ $C_2^2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^{14}.D_{42}.C_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{15}$ $G/\operatorname{Fit} \simeq$ $S_3\times F_7$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{14}.D_{42}.C_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{15}$ $G/\operatorname{soc} \simeq$ $S_3\times F_7$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{14}.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_2^{14}.D_{42}.C_6$ $\rhd$ $C_2^{14}.C_{21}$ $\rhd$ $C_2^{14}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{14}.D_{42}.C_6$ $\rhd$ $C_2^{14}.C_{42}.C_6$ $\rhd$ $C_2^{14}.C_{21}.C_6$ $\rhd$ $C_2^{14}.C_{21}.C_3$ $\rhd$ $C_2^{14}.C_{21}$ $\rhd$ $C_2^7.C_2\wr C_7$ $\rhd$ $C_2^{14}$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{14}.D_{42}.C_6$ $\rhd$ $C_2^{14}.C_{21}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $456 \times 456$ character table is not available for this group.

Rational character table

The $388 \times 388$ rational character table is not available for this group.