Properties

Label 8192.sg
Order \( 2^{13} \)
Exponent \( 2^{4} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{7} \)
$\card{Z(G)}$ 32
$\card{\Aut(G)}$ \( 2^{24} \)
$\card{\mathrm{Out}(G)}$ \( 2^{16} \)
Perm deg. not computed
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 66, 11260, 146, 4216, 22469, 21234, 20623, 28436, 5205, 226, 2229, 266, 5663, 6625, 346, 6314, 386, 339467, 152306, 30028, 466, 108211]); a,b,c,d,e := Explode([G.1, G.4, G.6, G.9, G.12]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "c2", "c4", "d", "d2", "d4", "e", "e2"]);
 
Copy content gap:G := PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192); a := G.1; b := G.4; c := G.6; d := G.9; e := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192)'); a = G.1; b = G.4; c = G.6; d = G.9; e = G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192)'); a = G.1; b = G.4; c = G.6; d = G.9; e = G.12;
 

Group information

Description:$(C_4^2\times C_8).C_4^3$
Order: \(8192\)\(\medspace = 2^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(16\)\(\medspace = 2^{4} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:Group of order \(16777216\)\(\medspace = 2^{24} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Nilpotency class:$4$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage:G.NilpotencyClassOfGroup()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8 16
Elements 1 31 992 2048 5120 8192
Conjugacy classes   1 19 92 272 320 704
Divisions 1 19 64 112 60 256
Autjugacy classes 1 17 68 112 32 230

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 32
Irr. complex chars.   128 288 240 48 0 0 704
Irr. rational chars. 8 52 100 48 24 24 256

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: ${\langle a, b, c, d, e \mid c^{8}=d^{8}=e^{4}=[a,b]=[a,d]=[d,e]=1, a^{8}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 66, 11260, 146, 4216, 22469, 21234, 20623, 28436, 5205, 226, 2229, 266, 5663, 6625, 346, 6314, 386, 339467, 152306, 30028, 466, 108211]); a,b,c,d,e := Explode([G.1, G.4, G.6, G.9, G.12]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "c2", "c4", "d", "d2", "d4", "e", "e2"]);
 
Copy content gap:G := PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192); a := G.1; b := G.4; c := G.6; d := G.9; e := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192)'); a = G.1; b = G.4; c = G.6; d = G.9; e = G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(153989267590418098229124338000430820734697161653347560268087666579136392835348122437025265089782506255537900948351,8192)'); a = G.1; b = G.4; c = G.6; d = G.9; e = G.12;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 26 \\ 6 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 31 & 16 \\ 8 & 15 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 31 & 30 \\ 4 & 3 \end{array}\right), \left(\begin{array}{rr} 3 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 24 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 4 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/32\Z)$
Copy content comment:Define the group as a matrix group with coefficients in GLZq
 
Copy content magma:G := MatrixGroup< 2, Integers(32) | [[1, 8, 0, 1], [17, 0, 0, 17], [9, 26, 6, 7], [1, 16, 0, 1], [9, 0, 0, 9], [31, 16, 8, 15], [3, 0, 0, 3], [1, 16, 16, 17], [31, 30, 4, 3], [3, 1, 0, 1], [17, 0, 0, 1], [25, 24, 8, 9], [9, 4, 0, 1]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(1,32), ZmodnZObj(8,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(17,32)]],[[ZmodnZObj(9,32), ZmodnZObj(26,32)], [ZmodnZObj(6,32), ZmodnZObj(7,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(9,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(9,32)]],[[ZmodnZObj(31,32), ZmodnZObj(16,32)], [ZmodnZObj(8,32), ZmodnZObj(15,32)]],[[ZmodnZObj(3,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(3,32)]],[[ZmodnZObj(1,32), ZmodnZObj(16,32)], [ZmodnZObj(16,32), ZmodnZObj(17,32)]],[[ZmodnZObj(31,32), ZmodnZObj(30,32)], [ZmodnZObj(4,32), ZmodnZObj(3,32)]],[[ZmodnZObj(3,32), ZmodnZObj(1,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(17,32), ZmodnZObj(0,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]],[[ZmodnZObj(25,32), ZmodnZObj(24,32)], [ZmodnZObj(8,32), ZmodnZObj(9,32)]],[[ZmodnZObj(9,32), ZmodnZObj(4,32)], [ZmodnZObj(0,32), ZmodnZObj(1,32)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(32), 2, 2) G = MatrixGroup([MS([[1, 8], [0, 1]]), MS([[17, 0], [0, 17]]), MS([[9, 26], [6, 7]]), MS([[1, 16], [0, 1]]), MS([[9, 0], [0, 9]]), MS([[31, 16], [8, 15]]), MS([[3, 0], [0, 3]]), MS([[1, 16], [16, 17]]), MS([[31, 30], [4, 3]]), MS([[3, 1], [0, 1]]), MS([[17, 0], [0, 1]]), MS([[25, 24], [8, 9]]), MS([[9, 4], [0, 1]])])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_4^2.C_4^3)$ . $Q_8$ (2) $(C_8^2.C_4^2)$ . $Q_8$ (2) $(C_8^2.C_4^2)$ . $Q_8$ (2) $(C_4^3.Q_8)$ . $C_4^2$ (2) all 1184

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{32}\Z)$.

Homology

Abelianization: $C_{4}^{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5} \times C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 3086 normal subgroups (2348 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2\times C_8$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: a subgroup isomorphic to $C_2\times C_4\times C_8$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^2\times C_4\times C_8^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_4^2\times C_8).C_4^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $704 \times 704$ character table is not available for this group.

Rational character table

See the $256 \times 256$ rational character table (warning: may be slow to load).