| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid b^{12}=c^{2}=d^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([22, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 12326435088, 16887850761, 111, 10875653450, 178, 24951125059, 88270538404, 17613470186, 15963231948, 3137133850, 26996999045, 53315916219, 7103501113, 1872405683, 96048837, 379, 2629216134, 27718506844, 17517132914, 3539821896, 1319783790, 68119784839, 62445049949, 33094741203, 13087608409, 2514591647, 2987771541, 377081371, 513, 159335320328, 1724405790, 25300693492, 13385699786, 9600, 2090846854, 11819042409, 28414285711, 17164686053, 5153888595, 3869727937, 494627879, 471354981, 611890123, 161236205, 647, 131063049226, 85586548640, 12398506086, 124198348, 69794, 34968, 5972, 98576527115, 57902309025, 28066409767, 7742070149, 5630435811, 3436551481, 564566255, 155152965, 193487371, 28216001, 6938943, 781, 89568308556, 44784154306, 25005936440, 22141630446, 4571546, 41350, 68850, 73346898253, 83049696611, 38816578473, 18007091335, 5316119525, 3129876411, 658826929, 814236359, 271068525, 19504003, 3280455, 6745, 915, 121201090574, 132231813156, 1440442138, 1001630600, 1250536422, 1710844, 285288, 8176, 281423020047, 140711510053, 8342839355, 7992788049, 5474429, 912553, 4525, 68122238992, 18333444134, 10052761020, 10905893938, 34898792, 3280476798, 546746282, 484918, 81042, 13766, 246393176849, 62152510503, 18377922877, 5685753827, 1619709801, 1527330943, 254555307, 7056979, 620439, 2291389074, 166263546280, 65138217470, 37394591076, 1826706922, 884100224, 302826124, 28621512, 8427140, 1354624, 185417717779, 111293360681, 54633680703, 11635594165, 1539648107, 5946462849, 92379053, 143890777, 2598021, 1069505, 195030291476, 97515145770, 10490135104, 6231821990, 1745960962, 290993646, 8083414, 48174432789, 96829489195, 38991148481, 19701351735, 10982138221, 2581818755, 1073876143, 71508315, 29795303, 4234339]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o"]);
gap:G := PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
|
| Permutation group: | Degree $36$
$\langle(1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) >;
gap:G := Group( (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) );
sage:G = PermutationGroup(['(1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22)', '(1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18)'])
|
| Transitive group: |
36T91090 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^6)$ . $D_{12}$ |
$C_3^{12}$ . $(C_2^6:D_{12})$ |
$(C_3^{12}.C_2^5.C_2)$ . $S_4$ (3) |
$(C_3^{12}.C_2^6.D_6)$ . $C_2$ |
all 24 |
Elements of the group are displayed as permutations of degree 36.
The $2920 \times 2920$ character table is not available for this group.
The $2450 \times 2450$ rational character table is not available for this group.