Properties

Label 816293376.sr
Order \( 2^{9} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) >;
 
Copy content gap:G := Group( (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) );
 
Copy content sage:G = PermutationGroup(['(1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22)', '(1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 

Group information

Description:$C_3^{12}.C_2^6.D_{12}$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 578367 1371248 21415104 125491248 67184640 449087328 60466176 90699264 816293376
Conjugacy classes   1 23 692 20 1826 23 326 5 4 2920
Divisions 1 23 552 19 1626 20 202 5 2 2450
Autjugacy classes 1 19 334 13 984 11 128 3 1 1494

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid b^{12}=c^{2}=d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 12326435088, 16887850761, 111, 10875653450, 178, 24951125059, 88270538404, 17613470186, 15963231948, 3137133850, 26996999045, 53315916219, 7103501113, 1872405683, 96048837, 379, 2629216134, 27718506844, 17517132914, 3539821896, 1319783790, 68119784839, 62445049949, 33094741203, 13087608409, 2514591647, 2987771541, 377081371, 513, 159335320328, 1724405790, 25300693492, 13385699786, 9600, 2090846854, 11819042409, 28414285711, 17164686053, 5153888595, 3869727937, 494627879, 471354981, 611890123, 161236205, 647, 131063049226, 85586548640, 12398506086, 124198348, 69794, 34968, 5972, 98576527115, 57902309025, 28066409767, 7742070149, 5630435811, 3436551481, 564566255, 155152965, 193487371, 28216001, 6938943, 781, 89568308556, 44784154306, 25005936440, 22141630446, 4571546, 41350, 68850, 73346898253, 83049696611, 38816578473, 18007091335, 5316119525, 3129876411, 658826929, 814236359, 271068525, 19504003, 3280455, 6745, 915, 121201090574, 132231813156, 1440442138, 1001630600, 1250536422, 1710844, 285288, 8176, 281423020047, 140711510053, 8342839355, 7992788049, 5474429, 912553, 4525, 68122238992, 18333444134, 10052761020, 10905893938, 34898792, 3280476798, 546746282, 484918, 81042, 13766, 246393176849, 62152510503, 18377922877, 5685753827, 1619709801, 1527330943, 254555307, 7056979, 620439, 2291389074, 166263546280, 65138217470, 37394591076, 1826706922, 884100224, 302826124, 28621512, 8427140, 1354624, 185417717779, 111293360681, 54633680703, 11635594165, 1539648107, 5946462849, 92379053, 143890777, 2598021, 1069505, 195030291476, 97515145770, 10490135104, 6231821990, 1745960962, 290993646, 8083414, 48174432789, 96829489195, 38991148481, 19701351735, 10982138221, 2581818755, 1073876143, 71508315, 29795303, 4234339]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(806389301637949033195641779811861897308912538506778260830372917013616431206839879120111411507444254941450278882920857235242900698660544984630695660978004804767448980687053630757881801213246790823322516728634804343799778867097875172159767937853452406357046697660488605173133189599658373304116485314671610155892727397403011948432082308219829825224596082787265974595579412734681258680267387746659746143933617433228958253518319314718146123183887566208965005010560694326558055802801478364529100943762391576218744078742991278662210042757215023116660002521064404600431528344159620810524777791971729223257488412476388836456756183048051177937551056565199464989484613771387524994906575303704289691939032327165319317621750601676909524032533212390418727066158885502441485337012782112013939357575265502072513636030914457132766124326452682856588445967333413699878097042010001785921233703602649420658282720445659240470149603681291852000339193036224173382158221273244828852567196454832945211864637866002748952235742353819473771447162703300850139226732234370661017841241090610455490019276216398175803933317924189141788603772583927788065150248047827796232129510205130251308446798126035142946363318677840947998176945548314101889440166471241563883471878274616622646810076771339299831046961613080237241431743934248573157656764310651467621129179488878622199308409526144675913630746527834866282093016172014186893900899356901153959451209951198301014133570700135236755717708098303,816293376)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Permutation group:Degree $36$ $\langle(1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) >;
 
Copy content gap:G := Group( (1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22), (1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18) );
 
Copy content sage:G = PermutationGroup(['(1,9,2,8)(3,7)(4,35,6,34)(5,36)(10,31)(11,32,12,33)(13,28)(14,30,15,29)(16,25)(17,26)(18,27)(19,24)(20,23)(21,22)', '(1,25,36,23,3,27,35,22,2,26,34,24)(4,32,8,29)(5,33,9,28)(6,31,7,30)(10,15,11,14,12,13)(16,17,18)'])
 
Transitive group: 36T91090 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6)$ . $D_{12}$ $C_3^{12}$ . $(C_2^6:D_{12})$ $(C_3^{12}.C_2^5.C_2)$ . $S_4$ (3) $(C_3^{12}.C_2^6.D_6)$ . $C_2$ all 24

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 34 normal subgroups (28 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2920 \times 2920$ character table is not available for this group.

Rational character table

The $2450 \times 2450$ rational character table is not available for this group.