Properties

Label 800000000.wi
Order \( 2^{11} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{15} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $40$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) >;
 
Copy content gap:G := Group( (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23)', '(1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39)', '(1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19;
 

Group information

Description:$C_5^8.C_4^3.C_4^2.C_2$
Order: \(800000000\)\(\medspace = 2^{11} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(12800000000\)\(\medspace = 2^{15} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 506975 55860000 390624 170000000 36602400 200000000 256640000 80000000 800000000
Conjugacy classes   1 12 49 262 22 254 8 166 8 782
Divisions 1 12 35 262 11 254 2 88 4 669
Autjugacy classes 1 11 35 65 10 100 1 71 4 298

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid d^{20}=e^{20}=f^{10}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 38, 10114498324, 34153127534, 13842739923, 154, 199365027, 25303127814, 692268860, 44684950124, 32655433783, 16155814042, 341696251, 270, 8902612037, 7976782488, 8891434603, 186778118, 114000100, 18876831518, 22842925585, 7451796928, 3294408999, 3099651798, 2351229695, 386, 1167442695, 40001752474, 5187885293, 6503384512, 7172944531, 1056952774, 444, 116487936008, 9797506587, 5844971566, 13680021953, 5130008292, 1763357575, 82725571369, 12473630748, 12260672687, 2411601666, 175119285, 40743704, 1124545523, 974489242, 378291111, 560, 95476851370, 61831683613, 2098065776, 1169664387, 169908726, 50845625, 1880858004, 270985363, 269403252, 618, 6338764811, 24020883486, 40697102641, 2357191748, 142345047, 149604586, 530838845, 33324624, 185580482060, 17462516687, 10248326450, 22505059269, 1879966488, 367338507, 2191680526, 383788745, 337426864, 145221363, 21289132, 3990506, 734, 124753438221, 43547392032, 1269990451, 5107270, 159174489, 174070508, 126190527, 43517746, 6299064, 21483, 18536217614, 16490419233, 4446912052, 1085280071, 378480090, 266760109, 43320128, 6783185, 1083204, 333692, 6381568015, 3151872034, 25078784053, 145920072, 72960091, 48640110, 18240129, 12160148, 608186, 608205, 61043, 20842337296, 23939002915, 22135577654, 237728073, 108528092, 240312111, 86564130, 29070149, 516987, 1841306, 300634, 7144243217, 30555823140, 1794816055, 342000131, 342000150, 1710245, 18390784018, 11767329317, 12014080056, 22110528075, 4031648094, 1917632113, 138190989, 94437808, 9025246]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.5, G.7, G.10, G.13, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.10; f := G.13; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19;
 
Permutation group:Degree $40$ $\langle(1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) >;
 
Copy content gap:G := Group( (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23)', '(1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39)', '(1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36)'])
 
Transitive group: 40T228190 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_4^3.C_4^2)$ . $C_2$ (2) $(C_5^8.C_4^3.C_4^2)$ . $C_2$ (2) $(C_5^8.C_2^4.C_2^3)$ . $Q_{16}$ (2) $(C_5^4.D_5^4)$ . $(C_2^4.D_4)$ all 74

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 129 normal subgroups (105 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2\times C_4^3).C_2^3.C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $782 \times 782$ character table is not available for this group.

Rational character table

The $669 \times 669$ rational character table is not available for this group.