| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k \mid d^{20}=e^{20}=f^{10}=g^{5}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([19, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 38, 10114498324, 34153127534, 13842739923, 154, 199365027, 25303127814, 692268860, 44684950124, 32655433783, 16155814042, 341696251, 270, 8902612037, 7976782488, 8891434603, 186778118, 114000100, 18876831518, 22842925585, 7451796928, 3294408999, 3099651798, 2351229695, 386, 1167442695, 40001752474, 5187885293, 6503384512, 7172944531, 1056952774, 444, 116487936008, 9797506587, 5844971566, 13680021953, 5130008292, 1763357575, 82725571369, 12473630748, 12260672687, 2411601666, 175119285, 40743704, 1124545523, 974489242, 378291111, 560, 95476851370, 61831683613, 2098065776, 1169664387, 169908726, 50845625, 1880858004, 270985363, 269403252, 618, 6338764811, 24020883486, 40697102641, 2357191748, 142345047, 149604586, 530838845, 33324624, 185580482060, 17462516687, 10248326450, 22505059269, 1879966488, 367338507, 2191680526, 383788745, 337426864, 145221363, 21289132, 3990506, 734, 124753438221, 43547392032, 1269990451, 5107270, 159174489, 174070508, 126190527, 43517746, 6299064, 21483, 18536217614, 16490419233, 4446912052, 1085280071, 378480090, 266760109, 43320128, 6783185, 1083204, 333692, 6381568015, 3151872034, 25078784053, 145920072, 72960091, 48640110, 18240129, 12160148, 608186, 608205, 61043, 20842337296, 23939002915, 22135577654, 237728073, 108528092, 240312111, 86564130, 29070149, 516987, 1841306, 300634, 7144243217, 30555823140, 1794816055, 342000131, 342000150, 1710245, 18390784018, 11767329317, 12014080056, 22110528075, 4031648094, 1917632113, 138190989, 94437808, 9025246]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.5, G.7, G.10, G.13, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "g", "h", "i", "j", "k"]);
gap:G := PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.10; f := G.13; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(53466101321923295439885344093821220941113462633235126373397251021897985434611327824228550886832805652604979250891995474395649401619211617510485693735241900692999244835219627203561623175918112294252220394197120800287225926021784287559161317550661995008647806861755635152805244031064055632847653615318351573837463092475808375026384372674877419723475496417011031720561357628743929403464102681362498990941751867095980778712167814288004549675980571682855539203290928205899157126034366909514666383505400558219597094969285789589593917428266749819132484852685368533142713555050236540984687225233803271560736695828722931205122911551332605095988437791045562077086703840803007493274295637104334690312421239147400140749089787794408111190388279072122481175668563291401887804932277427694559814004217069351490947801554378734828157563747833785141175060819246324172243774270690478317194058542586733099095871613441152045017880633330767419361255202946393186862326687752654032755014696590494633002620344594070968679492774993163377230856026469312697147602995933878679053325328819647367337753018095746153973907698263400484635675815296431272213631966471278772646741928606027063498676354223420602399319128626611870016961688402499349273723258200891429440454797804351070446538891687881510566809599,800000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19;
|
| Permutation group: | Degree $40$
$\langle(1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 40 | (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) >;
gap:G := Group( (1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23), (1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39), (1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36) );
sage:G = PermutationGroup(['(1,26,12,20,2,30,11,17,3,29,15,19,4,28,14,16,5,27,13,18)(6,35,39,25,9,32,37,22,7,34,40,24,10,31,38,21,8,33,36,23)', '(1,2,5,4)(6,10,9,8,7)(11,13,14,12)(16,19)(17,18)(21,22,25,24)(26,29,27,30,28)(32,34,35,33)(36,40)(37,39)', '(1,31,4,35,3,32,5,33)(2,34)(6,19,8,18)(7,16)(9,20,10,17)(11,25,12,22,15,23,14,21)(13,24)(26,38,27,40,28,37,29,39,30,36)'])
|
| Transitive group: |
40T228190 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_5^8.C_4^3.C_4^2)$ . $C_2$ (2) |
$(C_5^8.C_4^3.C_4^2)$ . $C_2$ (2) |
$(C_5^8.C_2^4.C_2^3)$ . $Q_{16}$ (2) |
$(C_5^4.D_5^4)$ . $(C_2^4.D_4)$ |
all 74 |
Elements of the group are displayed as permutations of degree 40.
The $782 \times 782$ character table is not available for this group.
The $669 \times 669$ rational character table is not available for this group.