Properties

Label 78400.a
Order \( 2^{6} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{3} \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \cdot 5 \cdot 7 \)
$\card{Z(G)}$ 280
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \cdot 3^{2} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36), (1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40), (3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35) >;
 
Copy content gap:G := Group( (1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36), (1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40), (3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36)', '(1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40)', '(3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1805331933456576500903170370978159770016109520127815267398835216589368901582581255706782151351,78400)'); a = G.1; b = G.2; c = G.6;
 

Group information

Description:$C_{280}.D_{140}$
Order: \(78400\)\(\medspace = 2^{6} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2580480\)\(\medspace = 2^{13} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_5$ x 2, $C_7$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 7 8 10 14 20 28 35 40 56 70 140 280
Elements 1 283 292 24 48 576 1192 1824 1408 2256 1152 2624 4128 10176 20544 31872 78400
Conjugacy classes   1 4 9 14 27 14 46 87 156 306 588 216 420 1788 6984 9360 20020
Divisions 1 4 6 4 5 6 12 15 22 28 26 18 22 76 150 106 501

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b, c \mid a^{2}=b^{140}=c^{280}=[b,c]=1, b^{a}=bc^{238}, c^{a}=c^{279} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -2, -5, -7, -2, -2, -2, -5, -7, 1332841, 51, 1646522, 82, 1254723, 233, 4687205, 175, 5448806, 206, 6182407, 237, 6854408, 538, 6720009]); a,b,c := Explode([G.1, G.2, G.6]); AssignNames(~G, ["a", "b", "b2", "b4", "b20", "c", "c2", "c4", "c8", "c40"]);
 
Copy content gap:G := PcGroupCode(1805331933456576500903170370978159770016109520127815267398835216589368901582581255706782151351,78400); a := G.1; b := G.2; c := G.6;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1805331933456576500903170370978159770016109520127815267398835216589368901582581255706782151351,78400)'); a = G.1; b = G.2; c = G.6;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1805331933456576500903170370978159770016109520127815267398835216589368901582581255706782151351,78400)'); a = G.1; b = G.2; c = G.6;
 
Permutation group:Degree $40$ $\langle(1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36), (1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40), (3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35) >;
 
Copy content gap:G := Group( (1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36), (1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40), (3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8,13,16,15,11)(3,6,10,14,12,9,7,5)(24,25,27,29,32)(26,30,33,31,28)(34,35,37,39,40,38,36)', '(1,3)(2,5)(4,7)(6,11)(8,9)(10,15)(12,13)(14,16)(24,26)(25,28)(27,31)(29,33)(30,32)(35,36)(37,38)(39,40)', '(3,7,12,10)(5,9,14,6)(17,18,19,20,21,22,23)(24,27,32,25,29)(26,30,33,31,28)(34,36,38,40,39,37,35)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 94 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{281})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(281) | [[1, 0, 0, 9], [3, 0, 0, 94], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(281)^0, 0*Z(281) ], [ 0*Z(281), Z(281)^2 ]], [[ Z(281), 0*Z(281) ], [ 0*Z(281), Z(281)^279 ]], [[ 0*Z(281), Z(281)^0 ], [ Z(281)^0, 0*Z(281) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(281), 2, 2) G = MatrixGroup([MS([[1, 0], [0, 9]]), MS([[3, 0], [0, 94]]), MS([[0, 1], [1, 0]])])
 
Direct product: not computed
Semidirect product: $C_{35}^2$ $\,\rtimes\,$ $(D_8:C_4)$ $C_7^2$ $\,\rtimes\,$ $(D_{40}:C_{20})$ $C_5^2$ $\,\rtimes\,$ $(D_{56}:C_{28})$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $D_{280}$ . $C_{140}$ $C_{280}$ . $D_{140}$ (2) $C_{140}^2$ . $C_2^2$ $(C_8.D_{70})$ . $C_{70}$ (2) all 210

Elements of the group are displayed as matrices in $\GL_{2}(\F_{281})$.

Homology

Abelianization: $C_{2}^{2} \times C_{140} \simeq C_{2}^{2} \times C_{4} \times C_{5} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 300 normal subgroups (244 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{280}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{140}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2\times C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $20020 \times 20020$ character table is not available for this group.

Rational character table

The $501 \times 501$ rational character table is not available for this group.