Properties

Label 7801596.a
Order \( 2^{2} \cdot 3^{4} \cdot 11^{2} \cdot 199 \)
Exponent \( 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3^{4} \cdot 11^{2} \)
$\card{Z(G)}$ \( 2 \cdot 3^{2} \cdot 11 \)
$\card{\Aut(G)}$ \( 2^{4} \cdot 3^{5} \cdot 5 \cdot 11^{2} \cdot 199 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \)
Perm deg. not computed
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -3, -3, -11, -2, -3, -3, -11, -199, 18, 64, 101, 63519394, 149077678, 17643307, 1176646, 130, 152446541, 147143318, 42343907, 2823908, 212, 42062334, 23501031, 66286860, 9883599, 249, 144213703, 80574928, 40030873, 2680162, 862, 520785944, 49220639, 74095586, 33166619]); a,b := Explode([G.1, G.5]); AssignNames(~G, ["a", "a2", "a6", "a18", "b", "b2", "b6", "b18", "b198"]);
 
Copy content gap:G := PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596); a := G.1; b := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596)'); a = G.1; b = G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596)'); a = G.1; b = G.5;
 

Group information

Description:$C_{199}:C_{198}^2$
Order: \(7801596\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11^{2} \cdot 199 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:Group of order \(468095760\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \cdot 11^{2} \cdot 199 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$ x 4, $C_{11}$ x 2, $C_{199}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 6 9 11 18 22 33 66 99 198 199 398 597 1194 1791 2189 3582 4378 6567 13134 19701 39402
Elements 1 399 1196 4380 13140 21900 41796 69660 187080 569160 1707480 5146200 198 198 396 396 1188 1980 1188 1980 3960 3960 11880 11880 7801596
Conjugacy classes   1 3 8 24 72 120 216 360 960 2880 8640 25920 1 1 2 2 6 10 6 10 20 20 60 60 39402
Divisions 1 3 4 12 12 12 36 36 48 144 144 432 1 1 1 1 1 1 1 1 1 1 1 1 896

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: $\langle a, b \mid a^{198}=b^{39402}=1, b^{a}=b^{7129} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -3, -3, -11, -2, -3, -3, -11, -199, 18, 64, 101, 63519394, 149077678, 17643307, 1176646, 130, 152446541, 147143318, 42343907, 2823908, 212, 42062334, 23501031, 66286860, 9883599, 249, 144213703, 80574928, 40030873, 2680162, 862, 520785944, 49220639, 74095586, 33166619]); a,b := Explode([G.1, G.5]); AssignNames(~G, ["a", "a2", "a6", "a18", "b", "b2", "b6", "b18", "b198"]);
 
Copy content gap:G := PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596); a := G.1; b := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596)'); a = G.1; b = G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(242057204539291012618446161768571915813985353068287998850021431851247344884760967602143563672495438908556540494349381390715595069582525308018485084747747005253957150065397050477067864788906617973941099872222905026007,7801596)'); a = G.1; b = G.5;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 133 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{199})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(199) | [[1, 1, 0, 1], [1, 0, 0, 3], [3, 0, 0, 133]] >;
 
Copy content gap:G := Group([[[ Z(199)^0, Z(199)^0 ], [ 0*Z(199), Z(199)^0 ]], [[ Z(199)^0, 0*Z(199) ], [ 0*Z(199), Z(199) ]], [[ Z(199), 0*Z(199) ], [ 0*Z(199), Z(199)^197 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(199), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[1, 0], [0, 3]]), MS([[3, 0], [0, 133]])])
 
Direct product: $C_2$ $\, \times\, $ $C_9$ $\, \times\, $ $C_{11}$ $\, \times\, $ $F_{199}$
Semidirect product: $C_{199}$ $\,\rtimes\,$ $C_{198}^2$ $(C_{4378}:C_{22})$ $\,\rtimes\,$ $C_9^2$ $(C_{1791}:C_9)$ $\,\rtimes\,$ $C_{22}^2$ $(C_{19701}:C_{99})$ $\,\rtimes\,$ $C_2^2$ all 6
Trans. wreath product: not computed
Possibly split product: $F_{199}$ . $C_{198}$ $C_{198}$ . $F_{199}$ $C_{39402}$ . $C_{198}$ $(C_{99}\times F_{199})$ . $C_2$ all 163

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{198}^{2} \simeq C_{2}^{2} \times C_{9}^{2} \times C_{11}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 1622 normal subgroups (66 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{198}$ $G/Z \simeq$ $F_{199}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_{199}$ $G/G' \simeq$ $C_{198}^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3$ $G/\Phi \simeq$ $C_{66}\times F_{199}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{39402}$ $G/\operatorname{Fit} \simeq$ $C_{198}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{199}:C_{198}^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{13134}$ $G/\operatorname{soc} \simeq$ $C_3\times C_{198}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_9^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^2$
199-Sylow subgroup: $P_{ 199 } \simeq$ $C_{199}$

Subgroup diagram and profile

Series

Derived series $C_{199}:C_{198}^2$ $\rhd$ $C_{199}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $C_{199}:C_{198}^2$ $\rhd$ $C_{19701}:C_{198}$ $\rhd$ $C_{19701}:C_{66}$ $\rhd$ $C_{3582}:C_{11}^2$ $\rhd$ $C_{39402}$ $\rhd$ $C_{19701}$ $\rhd$ $C_{6567}$ $\rhd$ $C_{2189}$ $\rhd$ $C_{199}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $C_{199}:C_{198}^2$ $\rhd$ $C_{199}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{198}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $39402 \times 39402$ character table is not available for this group.

Rational character table

The $896 \times 896$ rational character table is not available for this group.