Properties

Label 768.90143
Order \( 2^{8} \cdot 3 \)
Exponent \( 2^{5} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2^{3} \)
$\card{\Aut(G)}$ \( 2^{14} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3 \rtimes (C_4\times D_{32})$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Automorphism group:Group of order 49152
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 8 12 16 24 32 48 96
Elements 1 195 2 204 6 16 24 32 32 64 64 128 768
Conjugacy classes   1 7 1 12 3 8 12 16 16 32 32 64 204
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2
Irr. complex chars.   16 188 204

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid b^{2}=e^{2}=h^{2}=i^{3}=[a,c]=[a,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display

Homology

Abelianization: $C_{2}^{2} \times C_{4} $

Subgroups

Center: $Z \simeq$ $C_2\times C_4$ $G/Z \simeq$ $D_{48}$
Commutator: $G' \simeq$ $C_{48}$ $G/G' \simeq$ $C_2^2\times C_4$
Frattini: $\Phi \simeq$ $C_2\times C_{16}$ $G/\Phi \simeq$ $C_2\times D_6$
Fitting: $\operatorname{Fit} \simeq$ $C_4\times C_{96}$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_3 \rtimes (C_4\times D_{32})$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_6$ $G/S \simeq$ $C_2\times D_{16}$
2-Sylow subgroup: $P_{2} \simeq$ $C_4\times D_{32}$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_4\times D_{48}$ $G/M_{2,1} \simeq$ $C_2$ 2 normal subgroups
$M_{2,2} \simeq$ $C_{96}:C_4$ $G/M_{2,2} \simeq$ $C_2$
$M_{2,3} \simeq$ $D_{48}:C_4$ $G/M_{2,3} \simeq$ $C_2$ 2 normal subgroups
$M_{2,4} \simeq$ $C_2\times D_{96}$ $G/M_{2,4} \simeq$ $C_2$
$M_{2,5} \simeq$ $C_4\times C_{96}$ $G/M_{2,5} \simeq$ $C_2$
$M_{3} \simeq$ $C_4\times D_{32}$ 3 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_4\times D_{48}$
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_2\times D_{96}$
$m_{2,3} \simeq$ $C_2$ $G/m_{2,3} \simeq$ $D_{96}:C_2$
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $C_4\times D_{32}$