Properties

Label 768.1084149
Order \( 2^{8} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \cdot 3 \)
$\card{Z(G)}$ \( 2^{3} \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3 \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$(C_2^3.C_2^5) \rtimes C_3$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:Group of order 73728
Derived length:$2$

This group is nonabelian and metabelian (hence solvable). Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 6 12
Elements 1 31 32 224 224 256 768
Conjugacy classes   1 15 2 32 14 16 80
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 3 6
Irr. complex chars.   48 16 16 80

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{3}=e^{2}=f^{2}=g^{2}=h^{2}=i^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display

Homology

Abelianization: $C_{2}^{2} \times C_{12} \simeq C_{2}^{2} \times C_{4} \times C_{3}$

Subgroups

Center: $Z \simeq$ $C_2^3$ $G/Z \simeq$ $C_4^2:C_6$
Commutator: $G' \simeq$ $C_4^2$ $G/G' \simeq$ $C_2^2\times C_{12}$
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $C_2^3\times A_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^3.C_2^5$ $G/\operatorname{Fit} \simeq$ $C_3$
Radical: $R \simeq$ $(C_2^3.C_2^5) \rtimes C_3$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^5$ $G/S \simeq$ $C_2\times A_4$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^3.C_2^5$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
Maximal subgroups: $M_{2,1} \simeq$ $C_2^5.A_4$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $C_2\times C_4^2:C_{12}$ $G/M_{2,2} \simeq$ $C_2$ 6 normal subgroups
$M_{3} \simeq$ $C_2^3.C_2^5$ $G/M_{3} \simeq$ $C_3$
$M_{4} \simeq$ $C_2^4:C_{12}$ 4 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_2^5.A_4$
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_2\times C_4^2:C_{12}$ 6 normal subgroups
$m_{4} \simeq$ $C_2^2$ $G/m_{4} \simeq$ $C_2^4:C_{12}$