Group information
| Description: | $C_{124}.C_6$ | |
| Order: | \(744\)\(\medspace = 2^{3} \cdot 3 \cdot 31 \) |
|
| Exponent: | \(372\)\(\medspace = 2^{2} \cdot 3 \cdot 31 \) |
|
| Automorphism group: | $D_4\times F_{31}$, of order \(7440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 31 \) |
|
| Composition factors: | $C_2$ x 3, $C_3$, $C_{31}$ |
|
| Derived length: | $2$ |
|
This group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Group statistics
| Order | 1 | 2 | 3 | 4 | 6 | 12 | 31 | 62 | 124 | |
|---|---|---|---|---|---|---|---|---|---|---|
| Elements | 1 | 1 | 62 | 126 | 62 | 372 | 30 | 30 | 60 | 744 |
| Conjugacy classes | 1 | 1 | 2 | 3 | 2 | 6 | 5 | 5 | 10 | 35 |
| Divisions | 1 | 1 | 1 | 3 | 1 | 3 | 1 | 1 | 1 | 13 |
| Autjugacy classes | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 15 |
| Dimension | 1 | 2 | 4 | 6 | 30 | 60 | |
|---|---|---|---|---|---|---|---|
| Irr. complex chars. | 12 | 3 | 0 | 20 | 0 | 0 | 35 |
| Irr. rational chars. | 4 | 5 | 1 | 0 | 2 | 1 | 13 |
Minimal presentations
| Permutation degree: | $39$ |
| Transitive degree: | $248$ |
| Rank: | $2$ |
| Inequivalent generating pairs: | $24$ |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | 6 | 12 | 120 |
| Arbitrary | 6 | 10 | 34 |
Constructions
| Presentation: |
$\langle a, b \mid b^{124}=1, a^{6}=b^{62}, b^{a}=b^{99} \rangle$
| |||||||||
|
| ||||||||||
| Permutation group: | Degree $39$
$\langle(2,3)(4,6)(5,9)(7,8)(10,14)(11,17)(12,20)(13,19)(15,22)(16,23)(18,24)(21,27) \!\cdots\! \rangle$
| |||||||||
|
| ||||||||||
| Matrix group: | $\left\langle \left(\begin{array}{rr} 32 & 0 \\ 0 & 32 \end{array}\right), \left(\begin{array}{rr} 1 & 27 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 63 & 92 \\ 31 & 30 \end{array}\right), \left(\begin{array}{rr} 1 & 3 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 62 \\ 62 & 32 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/93\Z)$ | |||||||||
|
| ||||||||||
| Direct product: | not isomorphic to a non-trivial direct product | |||||||||
| Semidirect product: | $(C_{31}:Q_8)$ $\,\rtimes\,$ $C_3$ | $(C_{31}:C_3)$ $\,\rtimes\,$ $Q_8$ | $C_{31}$ $\,\rtimes\,$ $(C_3\times Q_8)$ | more information | ||||||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||||
| Non-split product: | $C_{124}$ . $C_6$ | $(C_{31}:C_4)$ . $C_6$ (2) | $C_{62}$ . $(C_2\times C_6)$ | $C_4$ . $(C_{31}:C_6)$ | all 8 | |||||
Elements of the group are displayed as words in the presentation generators from the presentation above.
Homology
| Abelianization: | $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$ |
|
| Schur multiplier: | $C_1$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 294 subgroups in 24 conjugacy classes, 15 normal (11 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | $Z \simeq$ $C_2$ | $G/Z \simeq$ $C_{62}:C_6$ |
|
| Commutator: | $G' \simeq$ $C_{62}$ | $G/G' \simeq$ $C_2\times C_6$ |
|
| Frattini: | $\Phi \simeq$ $C_2$ | $G/\Phi \simeq$ $C_{62}:C_6$ |
|
| Fitting: | $\operatorname{Fit} \simeq$ $C_{124}$ | $G/\operatorname{Fit} \simeq$ $C_6$ |
|
| Radical: | $R \simeq$ $C_{124}.C_6$ | $G/R \simeq$ $C_1$ |
|
| Socle: | $\operatorname{soc} \simeq$ $C_{62}$ | $G/\operatorname{soc} \simeq$ $C_2\times C_6$ |
|
| 2-Sylow subgroup: | $P_{ 2 } \simeq$ $Q_8$ | ||
| 3-Sylow subgroup: | $P_{ 3 } \simeq$ $C_3$ | ||
| 31-Sylow subgroup: | $P_{ 31 } \simeq$ $C_{31}$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
|
Series
| Derived series | $C_{124}.C_6$ | $\rhd$ | $C_{62}$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | $C_{124}.C_6$ | $\rhd$ | $C_{124}:C_3$ | $\rhd$ | $C_{124}$ | $\rhd$ | $C_{62}$ | $\rhd$ | $C_{31}$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | $C_{124}.C_6$ | $\rhd$ | $C_{62}$ | $\rhd$ | $C_{31}$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | $C_1$ | $\lhd$ | $C_2$ | $\lhd$ | $C_4$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 8 larger groups in the database.
This group is a maximal quotient of 3 larger groups in the database.
Character theory
Complex character table
See the $35 \times 35$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
| 1A | 2A | 3A | 4A | 4B | 4C | 6A | 12A | 12B | 12C | 31A | 62A | 124A | ||
| Size | 1 | 1 | 62 | 2 | 62 | 62 | 62 | 124 | 124 | 124 | 30 | 30 | 60 | |
| 2 P | 1A | 1A | 3A | 2A | 2A | 2A | 3A | 6A | 6A | 6A | 31A | 31A | 62A | |
| 3 P | 1A | 2A | 1A | 4A | 4B | 4C | 2A | 4B | 4A | 4C | 31A | 62A | 124A | |
| 31 P | 1A | 2A | 3A | 4A | 4B | 4C | 6A | 12A | 12B | 12C | 31A | 62A | 124A | |
| Schur | ||||||||||||||
| 744.7.1a | ||||||||||||||
| 744.7.1b | ||||||||||||||
| 744.7.1c | ||||||||||||||
| 744.7.1d | ||||||||||||||
| 744.7.1e | ||||||||||||||
| 744.7.1f | ||||||||||||||
| 744.7.1g | ||||||||||||||
| 744.7.1h | ||||||||||||||
| 744.7.2a | 2 | |||||||||||||
| 744.7.2b | ||||||||||||||
| 744.7.6a | ||||||||||||||
| 744.7.6b | ||||||||||||||
| 744.7.6c | 2 |