Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid b^{6}=f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 62318592, 142001413, 106, 9217658, 549856947, 112374384, 90309033, 234, 292564444, 15615205, 2621476, 4286608, 836807333, 373527530, 154533251, 3707996, 9921077, 90830, 311324838, 414506511, 75075006, 20391321, 2204502, 2973921, 426, 494452231, 170069788, 111484849, 5209414, 9135259, 3327856, 272314, 538332488, 181131581, 126010130, 4551191, 1410788, 5128061, 665792, 332417, 554, 622944009, 136463070, 139406451, 22441512, 26147613, 887154, 685575, 220656, 1197514, 306561055, 299428, 54952201, 9663286, 4939819, 4294, 6394, 76640267, 217760, 167650613, 36362, 3193439, 14987060, 798473, 1161395, 582320, 39154764, 381169185, 10496358, 65336619, 11616792, 5896917, 54192, 22272, 373911565, 418872418, 197370487, 73199020, 15643249, 17273206, 4016767, 1585114, 1372573, 684634, 109952654, 21500675, 17146136, 24267677, 19051319, 1587782, 831803, 433133583, 458390052, 226437177, 81333582, 16716771, 19160184, 4106733, 1569618, 1617015, 806604, 657611152, 349163173, 270817402, 62563615, 18275644, 22825273, 4646140, 2284606, 1902280, 850579, 1440270737, 1018313894, 541133519, 23079248, 6096506, 508217, 211130, 20684178, 610182759, 103937964, 2068497, 15340854, 502884, 1917759, 1191697939, 641934760, 110134141, 2358802, 37316263, 10402684, 12595105, 3954046, 1295467, 325288, 1542385172, 978019853, 369021806, 173111987, 82333040, 58487309, 17154164, 8136617, 2942540, 2500679]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
gap:G := PcGroupCode(498283147325802374001432290099240478476087791424309774271005406228402526437142227693885850580062736109509046611918998742125939933604456592899072809556532210647498164961684578360651235437872372854763169200980889278170494234843726587474733547815332210022958695880464498612474601570198325687576792047261197922668409839122118812314328510387624250095599766510679672303201082153747169019658145834847379821269281811207801408022497922747027488912507819029351919425224179518139314032040558979184431004904208905953973619793747161861696112174307267798242722284218378247119861414533991503579039370821046145952840707684391030559631132792625333134841921055109021849975091053626733927322422884432834425925750720848337373818267902850067502256220414790507978938238906927447676856472456005772246058305713428827423844729923341487140190747863321159758589779667334574661510529758339775294616949166770724181786314143734356215496288857334906190764111525293600352178713046107324878680210431071298909226367250828089370379608296424663545958520071155623459046921527826194107659586164626827264,7077888); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(498283147325802374001432290099240478476087791424309774271005406228402526437142227693885850580062736109509046611918998742125939933604456592899072809556532210647498164961684578360651235437872372854763169200980889278170494234843726587474733547815332210022958695880464498612474601570198325687576792047261197922668409839122118812314328510387624250095599766510679672303201082153747169019658145834847379821269281811207801408022497922747027488912507819029351919425224179518139314032040558979184431004904208905953973619793747161861696112174307267798242722284218378247119861414533991503579039370821046145952840707684391030559631132792625333134841921055109021849975091053626733927322422884432834425925750720848337373818267902850067502256220414790507978938238906927447676856472456005772246058305713428827423844729923341487140190747863321159758589779667334574661510529758339775294616949166770724181786314143734356215496288857334906190764111525293600352178713046107324878680210431071298909226367250828089370379608296424663545958520071155623459046921527826194107659586164626827264,7077888)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(498283147325802374001432290099240478476087791424309774271005406228402526437142227693885850580062736109509046611918998742125939933604456592899072809556532210647498164961684578360651235437872372854763169200980889278170494234843726587474733547815332210022958695880464498612474601570198325687576792047261197922668409839122118812314328510387624250095599766510679672303201082153747169019658145834847379821269281811207801408022497922747027488912507819029351919425224179518139314032040558979184431004904208905953973619793747161861696112174307267798242722284218378247119861414533991503579039370821046145952840707684391030559631132792625333134841921055109021849975091053626733927322422884432834425925750720848337373818267902850067502256220414790507978938238906927447676856472456005772246058305713428827423844729923341487140190747863321159758589779667334574661510529758339775294616949166770724181786314143734356215496288857334906190764111525293600352178713046107324878680210431071298909226367250828089370379608296424663545958520071155623459046921527826194107659586164626827264,7077888)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21;
|
Permutation group: | Degree $36$
$\langle(1,35,25,24,2,36,26,23)(3,33,28,22)(4,34,27,21)(5,32,30,20,6,31,29,19)(7,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,35,25,24,2,36,26,23)(3,33,28,22)(4,34,27,21)(5,32,30,20,6,31,29,19)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14), (1,18,2,17)(3,16)(4,15)(5,13,6,14)(7,36)(8,35)(9,33)(10,34)(11,32)(12,31)(19,24)(20,23)(25,29)(26,30)(27,28), (1,5)(2,6)(7,24,32,12,20,36)(8,23,31,11,19,35)(9,21,34,10,22,33)(13,30,14,29)(15,28,16,27)(17,26)(18,25), (1,27,13,3,26,15)(2,28,14,4,25,16)(5,30,18)(6,29,17)(7,21)(8,22)(9,19)(10,20)(11,23)(12,24)(31,34)(32,33) >;
gap:G := Group( (1,35,25,24,2,36,26,23)(3,33,28,22)(4,34,27,21)(5,32,30,20,6,31,29,19)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14), (1,18,2,17)(3,16)(4,15)(5,13,6,14)(7,36)(8,35)(9,33)(10,34)(11,32)(12,31)(19,24)(20,23)(25,29)(26,30)(27,28), (1,5)(2,6)(7,24,32,12,20,36)(8,23,31,11,19,35)(9,21,34,10,22,33)(13,30,14,29)(15,28,16,27)(17,26)(18,25), (1,27,13,3,26,15)(2,28,14,4,25,16)(5,30,18)(6,29,17)(7,21)(8,22)(9,19)(10,20)(11,23)(12,24)(31,34)(32,33) );
sage:G = PermutationGroup(['(1,35,25,24,2,36,26,23)(3,33,28,22)(4,34,27,21)(5,32,30,20,6,31,29,19)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14)', '(1,18,2,17)(3,16)(4,15)(5,13,6,14)(7,36)(8,35)(9,33)(10,34)(11,32)(12,31)(19,24)(20,23)(25,29)(26,30)(27,28)', '(1,5)(2,6)(7,24,32,12,20,36)(8,23,31,11,19,35)(9,21,34,10,22,33)(13,30,14,29)(15,28,16,27)(17,26)(18,25)', '(1,27,13,3,26,15)(2,28,14,4,25,16)(5,30,18)(6,29,17)(7,21)(8,22)(9,19)(10,20)(11,23)(12,24)(31,34)(32,33)'])
|
Transitive group: |
36T56697 |
|
|
|
more information |
Direct product: |
not isomorphic to a non-trivial direct product |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$C_2^{14}$ . $(S_3^3:C_2)$ |
$C_2^{12}$ . $(D_6^2:D_6)$ |
$C_2^{12}$ . $(D_6^2:D_6)$ |
$C_2^{13}$ . $(S_3^3:C_2^2)$ |
all 91 |
Elements of the group are displayed as permutations of degree 36.
The $1140 \times 1140$ rational character table is not available for this group.