Properties

Label 705277476864.id
Order \( 2^{14} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30), (4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33), (1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30) >;
 
Copy content gap:G := Group( (1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30), (4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33), (1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30) );
 
Copy content sage:G = PermutationGroup(['(1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30)', '(4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33)', '(1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29026240786024490566845840911222257496960603034172359922038605146597658416540707595510375576030776105750388390855065189611947377954165342221331203714552303422315265674813629638574770161534497878753791715258209531831648061037664033367594485236119306900433755013954750545312436984314572655262137212416134365179769146521422358404003888302098880581812928577723715923364051029443637503180707858895227493707576715158911786772721266695907320939753603443407943350352479917630972470918366031596423261083070728409499939533359535024418774146421514054522844660373335334732032562633351671679725541006692615531728212821376763403377009958720959590029808442198473022692302594022968484116822408437520294008273240802043298430096008375990813763866230906057366662942440622321227565975309227055171133292082895103740159662539615007876906257987697863888051986540185942475417108955613846739022918738847694457924344535937987814538178673823479397594329997803915453123657552941089734125728252307719882492394867674401732798827300358937286023527831107139499178426039501369758637067469714334268435990611562138546537789480350954211897545601321201736237954330206954296993420850160915143848216126250167476046396240546584763369157558144435734801931564403705056247837790760794441675217029599977212312796575504169511963852739217582015828447352669038293320088880076754609449673133705192657582990089806383372478494266192583052490578391462455872101236318956236601003245000844596113719364232181264405764501978643332518834451255364054486129109983753104904782522892593988861423107113929759008088315034175250649575120719279022423799961967515473470756451601792724364201392861354558977400231254824906248385802554804007223255910005002302330227540551715409552783137589458306047420958278698735545887458857876591290871972976354824083018973278987559196759128926495669900360105083003951307329005118230727447682468163467361702275299168176185903705451633486353529257914701411333316919824567269150209337128287565380874727078751291265166691835930766244217985016824170150126063953101010040340158537367592518114193021544475227653003483870649643921515665344831355476189968024241215035959132920521088187696328699486797976486647556182103960197369092155714065551111134312515089481140028432997377278972376668719461887268937335812513206504622837602932772002803598979277509568241982869319959169879109281467656144150588522408835517608161168716098790084323320737663089553886644826855484538243532074349285288519530998655768386398026054192517024207976212371631288826693926988334434255923512176709426013243358452310631710683031811662021960207203771012551986403345646353999513937830246355027994620026893302732454447893585949287073544112609989614481212248003293688023105134869817642358319023350490293860004641958165401334320618892601224927744109575100883564342917358311589292611650420177838611420196914487905020448149629310464780383141366090195205255055253118092087233089664938503154830532544269044248705419954561407104546254546965306751866753482015083212735285805794430699772197098063998992174868583775925741590522296790434524052540695681607666534036853115871806175900612725496025843333494978600372807515916591204313054280420757796493030262748065043884904442385315645065058004357584254092457808691571226410719480131926810296066220506954164648253059166264980014713864005362677547272025874822953741658875573347353714860748794245457975721896124496428341953119228720381758691795304591856741716080781288076913298042144430984964453836298305124418903417992552705210261686760876928250469800957204668539449762986574901032139905969019968992818821844720146930697023177753396928188721145757904985737073930233114864663802844966393602142717000918061008393755124518418444688781975103875221203910698584425747132147625605503756567295561204934073568012811826109795429289712361053805883653558853044624104058643098159980099063960125309074190272270704651601404154946510335800934051591222124897421427296895825340492041094282196924235465487316938598929049688640977071888199425670145855321853879315043596811876423791058958245563015067309145712359158226426533199392855989194689659774210865599775962006268440248329507084067056383,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29; t = G.30;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.D_4:D_4$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 48
Elements 1 25773903 96059600 7655164848 32533785648 42764702976 3390724800 159098266368 29386561536 99636920640 188654469120 83261924352 58773123072 705277476864
Conjugacy classes   1 17 122 40 629 16 278 1085 2 501 118 533 4 3346
Divisions 1 17 122 40 619 16 278 773 2 497 81 345 2 2793
Autjugacy classes 1 16 119 36 595 11 154 754 1 274 67 284 1 2313

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([30, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 20868863644800, 18592398390121, 151, 52708506186602, 11235094593182, 78563713053123, 27090176900673, 17425925619183, 7847452007133, 88582682023204, 16791193839634, 3979093719064, 4801763123794, 424, 34121055726725, 1241907888995, 15133631029985, 2359402045295, 1353979945955, 33689540129286, 3485691572196, 7516488446946, 315727117536, 3408031092606, 3261207527916, 1815221242986, 115477257876487, 47466951068197, 5948388103747, 18960535607137, 6412184107327, 889329826237, 1793249164267, 697, 25192627672328, 40004791660838, 4568135641988, 18306857096738, 3315204139088, 1595051773358, 867954225248, 162055998086409, 12518698848039, 4911217617669, 6742249776099, 2465820508929, 1451368168359, 691418065689, 725773178019, 80120427549, 879, 32176470205450, 1838020810600, 14588811832390, 7599252054340, 6353391823810, 931189636240, 232815460870, 748453915660, 225594787030, 52286588950, 224878279587851, 100542310283561, 62817696875591, 9013323340901, 7742654892131, 7173708598241, 2857651851071, 980162324861, 121268325161, 19769726471, 1061, 70745425920042, 29901734703432, 110048440422, 16837411369092, 1564299566112, 9642, 171338820226573, 37004671307563, 68379604151113, 14783199937063, 4659523470133, 4518109290403, 1536429610993, 865530943423, 183902640013, 48245685043, 78774727813, 1243, 277312402828814, 60988300185644, 29058543417674, 28830073539704, 2618603013734, 9719996500964, 3313755230594, 1121935860224, 86989334654, 100275640484, 184291634, 52785747394575, 103024271278125, 55767282278475, 19039800384105, 17637662546055, 1156408151205, 3219545802435, 179891228385, 109379393565, 89557799355, 11735349465, 86328405, 1203964275, 1425, 110195335802896, 166529432494126, 66733271193676, 31639533016426, 8552462837896, 3387639438886, 3836924355076, 270696168226, 232426584286, 138271620556, 7519338346, 2506593286, 1239303496, 7140517908497, 73237983529007, 2658294650957, 47601611483147, 15758250157577, 11755019324327, 5632762550597, 601443934787, 2269581377, 258798732767, 61677366077, 20458306427, 512766047, 48537257, 307933307, 1751717, 1607, 79225769779218, 165619562319408, 26745824471118, 39783937968108, 19538252611338, 5204332633128, 3432273490998, 503592893508, 196904338848, 129886429278, 43109237148, 1019447688, 31170318, 460229868, 309837950668819, 109602939801649, 93915320140879, 21156695121709, 9940593196939, 2589263625769, 6085643011399, 575088897829, 100413043459, 241704792289, 66683865919, 59963069149, 3214534009, 729940039, 500105269, 1955299, 2351329, 28060759, 1789, 224986685736980, 222028219445810, 41351019333200, 3395043590510, 25841887021580, 2114278770410, 3189322745480, 32920564550, 56288131460, 287125541930, 170810882240, 33069073310, 367416410, 929971160, 517739510, 86290370, 99806470410261, 70361174569011, 18880765010001, 56184611329551, 4881156318861, 10302493006251, 4908608527881, 117981563271, 144997633701, 150055805091, 104403816321, 34647212511, 2883391251, 108565821, 376501431, 2210181, 89124291, 30876681, 4178391, 727281, 1971, 158433802813462, 24812541665332, 37920354508882, 15143761244272, 7315219434382, 6290763782572, 4964883226042, 664093127752, 131539127302, 349873188772, 207385136242, 68967366112, 2189166172, 608977882, 3146992, 14163597066263, 232190115893, 62168903516273, 72559411343, 442612408493, 221306204363, 272904007913, 36884367623, 1263444893, 89579963, 52433, 9293, 145118822400024, 55279521792054, 483729408084, 17595658512114, 816293376144, 4573174464174, 1610331840204, 290573568234, 34012224264, 1940760414, 1347192444, 1296534, 162594, 27654, 540730688808985, 162042748508215, 127216776061525, 2274384303475, 16356362555665, 5165447526895, 6415865314765, 95637391435, 121620994825, 179706515335, 146513914885, 78278504035, 2923802335, 2115098365, 446809435, 2696215, 12608515, 1952215, 82630657474586, 69969040220216, 3526387384406, 68340688899956, 7805578659986, 3731367721136, 2186532507086, 8162933996, 90699264266, 3999935936, 1652322686, 5949176, 992036, 263096, 531035050291227, 110342123458617, 100635905018967, 30240175150197, 15736169998227, 14788909134897, 5272534270287, 596818696557, 132152187147, 490045147497, 172363645767, 3083159937, 107050047, 295021917, 8195637, 1512657, 498564027417628, 130056792099898, 130743253336408, 50854438345078, 23035586138068, 18526511510098, 3380483484208, 139325516878, 199462798348, 369457130458, 227837215048, 4718431498, 2242825648, 154470718, 46604698, 4322758, 721018, 184784658739229, 63758683699259, 60733129190489, 7693372224119, 29702330121749, 2711936764979, 2967377976209, 2824796851439, 723074688269, 137309007899, 21416659529, 6947219219, 2881397249, 1355357279, 37681799, 6156659]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.25, G.26, G.27, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(29026240786024490566845840911222257496960603034172359922038605146597658416540707595510375576030776105750388390855065189611947377954165342221331203714552303422315265674813629638574770161534497878753791715258209531831648061037664033367594485236119306900433755013954750545312436984314572655262137212416134365179769146521422358404003888302098880581812928577723715923364051029443637503180707858895227493707576715158911786772721266695907320939753603443407943350352479917630972470918366031596423261083070728409499939533359535024418774146421514054522844660373335334732032562633351671679725541006692615531728212821376763403377009958720959590029808442198473022692302594022968484116822408437520294008273240802043298430096008375990813763866230906057366662942440622321227565975309227055171133292082895103740159662539615007876906257987697863888051986540185942475417108955613846739022918738847694457924344535937987814538178673823479397594329997803915453123657552941089734125728252307719882492394867674401732798827300358937286023527831107139499178426039501369758637067469714334268435990611562138546537789480350954211897545601321201736237954330206954296993420850160915143848216126250167476046396240546584763369157558144435734801931564403705056247837790760794441675217029599977212312796575504169511963852739217582015828447352669038293320088880076754609449673133705192657582990089806383372478494266192583052490578391462455872101236318956236601003245000844596113719364232181264405764501978643332518834451255364054486129109983753104904782522892593988861423107113929759008088315034175250649575120719279022423799961967515473470756451601792724364201392861354558977400231254824906248385802554804007223255910005002302330227540551715409552783137589458306047420958278698735545887458857876591290871972976354824083018973278987559196759128926495669900360105083003951307329005118230727447682468163467361702275299168176185903705451633486353529257914701411333316919824567269150209337128287565380874727078751291265166691835930766244217985016824170150126063953101010040340158537367592518114193021544475227653003483870649643921515665344831355476189968024241215035959132920521088187696328699486797976486647556182103960197369092155714065551111134312515089481140028432997377278972376668719461887268937335812513206504622837602932772002803598979277509568241982869319959169879109281467656144150588522408835517608161168716098790084323320737663089553886644826855484538243532074349285288519530998655768386398026054192517024207976212371631288826693926988334434255923512176709426013243358452310631710683031811662021960207203771012551986403345646353999513937830246355027994620026893302732454447893585949287073544112609989614481212248003293688023105134869817642358319023350490293860004641958165401334320618892601224927744109575100883564342917358311589292611650420177838611420196914487905020448149629310464780383141366090195205255055253118092087233089664938503154830532544269044248705419954561407104546254546965306751866753482015083212735285805794430699772197098063998992174868583775925741590522296790434524052540695681607666534036853115871806175900612725496025843333494978600372807515916591204313054280420757796493030262748065043884904442385315645065058004357584254092457808691571226410719480131926810296066220506954164648253059166264980014713864005362677547272025874822953741658875573347353714860748794245457975721896124496428341953119228720381758691795304591856741716080781288076913298042144430984964453836298305124418903417992552705210261686760876928250469800957204668539449762986574901032139905969019968992818821844720146930697023177753396928188721145757904985737073930233114864663802844966393602142717000918061008393755124518418444688781975103875221203910698584425747132147625605503756567295561204934073568012811826109795429289712361053805883653558853044624104058643098159980099063960125309074190272270704651601404154946510335800934051591222124897421427296895825340492041094282196924235465487316938598929049688640977071888199425670145855321853879315043596811876423791058958245563015067309145712359158226426533199392855989194689659774210865599775962006268440248329507084067056383,705277476864); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.16; k := G.18; l := G.20; m := G.22; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28; s := G.29; t := G.30;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29026240786024490566845840911222257496960603034172359922038605146597658416540707595510375576030776105750388390855065189611947377954165342221331203714552303422315265674813629638574770161534497878753791715258209531831648061037664033367594485236119306900433755013954750545312436984314572655262137212416134365179769146521422358404003888302098880581812928577723715923364051029443637503180707858895227493707576715158911786772721266695907320939753603443407943350352479917630972470918366031596423261083070728409499939533359535024418774146421514054522844660373335334732032562633351671679725541006692615531728212821376763403377009958720959590029808442198473022692302594022968484116822408437520294008273240802043298430096008375990813763866230906057366662942440622321227565975309227055171133292082895103740159662539615007876906257987697863888051986540185942475417108955613846739022918738847694457924344535937987814538178673823479397594329997803915453123657552941089734125728252307719882492394867674401732798827300358937286023527831107139499178426039501369758637067469714334268435990611562138546537789480350954211897545601321201736237954330206954296993420850160915143848216126250167476046396240546584763369157558144435734801931564403705056247837790760794441675217029599977212312796575504169511963852739217582015828447352669038293320088880076754609449673133705192657582990089806383372478494266192583052490578391462455872101236318956236601003245000844596113719364232181264405764501978643332518834451255364054486129109983753104904782522892593988861423107113929759008088315034175250649575120719279022423799961967515473470756451601792724364201392861354558977400231254824906248385802554804007223255910005002302330227540551715409552783137589458306047420958278698735545887458857876591290871972976354824083018973278987559196759128926495669900360105083003951307329005118230727447682468163467361702275299168176185903705451633486353529257914701411333316919824567269150209337128287565380874727078751291265166691835930766244217985016824170150126063953101010040340158537367592518114193021544475227653003483870649643921515665344831355476189968024241215035959132920521088187696328699486797976486647556182103960197369092155714065551111134312515089481140028432997377278972376668719461887268937335812513206504622837602932772002803598979277509568241982869319959169879109281467656144150588522408835517608161168716098790084323320737663089553886644826855484538243532074349285288519530998655768386398026054192517024207976212371631288826693926988334434255923512176709426013243358452310631710683031811662021960207203771012551986403345646353999513937830246355027994620026893302732454447893585949287073544112609989614481212248003293688023105134869817642358319023350490293860004641958165401334320618892601224927744109575100883564342917358311589292611650420177838611420196914487905020448149629310464780383141366090195205255055253118092087233089664938503154830532544269044248705419954561407104546254546965306751866753482015083212735285805794430699772197098063998992174868583775925741590522296790434524052540695681607666534036853115871806175900612725496025843333494978600372807515916591204313054280420757796493030262748065043884904442385315645065058004357584254092457808691571226410719480131926810296066220506954164648253059166264980014713864005362677547272025874822953741658875573347353714860748794245457975721896124496428341953119228720381758691795304591856741716080781288076913298042144430984964453836298305124418903417992552705210261686760876928250469800957204668539449762986574901032139905969019968992818821844720146930697023177753396928188721145757904985737073930233114864663802844966393602142717000918061008393755124518418444688781975103875221203910698584425747132147625605503756567295561204934073568012811826109795429289712361053805883653558853044624104058643098159980099063960125309074190272270704651601404154946510335800934051591222124897421427296895825340492041094282196924235465487316938598929049688640977071888199425670145855321853879315043596811876423791058958245563015067309145712359158226426533199392855989194689659774210865599775962006268440248329507084067056383,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29; t = G.30;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(29026240786024490566845840911222257496960603034172359922038605146597658416540707595510375576030776105750388390855065189611947377954165342221331203714552303422315265674813629638574770161534497878753791715258209531831648061037664033367594485236119306900433755013954750545312436984314572655262137212416134365179769146521422358404003888302098880581812928577723715923364051029443637503180707858895227493707576715158911786772721266695907320939753603443407943350352479917630972470918366031596423261083070728409499939533359535024418774146421514054522844660373335334732032562633351671679725541006692615531728212821376763403377009958720959590029808442198473022692302594022968484116822408437520294008273240802043298430096008375990813763866230906057366662942440622321227565975309227055171133292082895103740159662539615007876906257987697863888051986540185942475417108955613846739022918738847694457924344535937987814538178673823479397594329997803915453123657552941089734125728252307719882492394867674401732798827300358937286023527831107139499178426039501369758637067469714334268435990611562138546537789480350954211897545601321201736237954330206954296993420850160915143848216126250167476046396240546584763369157558144435734801931564403705056247837790760794441675217029599977212312796575504169511963852739217582015828447352669038293320088880076754609449673133705192657582990089806383372478494266192583052490578391462455872101236318956236601003245000844596113719364232181264405764501978643332518834451255364054486129109983753104904782522892593988861423107113929759008088315034175250649575120719279022423799961967515473470756451601792724364201392861354558977400231254824906248385802554804007223255910005002302330227540551715409552783137589458306047420958278698735545887458857876591290871972976354824083018973278987559196759128926495669900360105083003951307329005118230727447682468163467361702275299168176185903705451633486353529257914701411333316919824567269150209337128287565380874727078751291265166691835930766244217985016824170150126063953101010040340158537367592518114193021544475227653003483870649643921515665344831355476189968024241215035959132920521088187696328699486797976486647556182103960197369092155714065551111134312515089481140028432997377278972376668719461887268937335812513206504622837602932772002803598979277509568241982869319959169879109281467656144150588522408835517608161168716098790084323320737663089553886644826855484538243532074349285288519530998655768386398026054192517024207976212371631288826693926988334434255923512176709426013243358452310631710683031811662021960207203771012551986403345646353999513937830246355027994620026893302732454447893585949287073544112609989614481212248003293688023105134869817642358319023350490293860004641958165401334320618892601224927744109575100883564342917358311589292611650420177838611420196914487905020448149629310464780383141366090195205255055253118092087233089664938503154830532544269044248705419954561407104546254546965306751866753482015083212735285805794430699772197098063998992174868583775925741590522296790434524052540695681607666534036853115871806175900612725496025843333494978600372807515916591204313054280420757796493030262748065043884904442385315645065058004357584254092457808691571226410719480131926810296066220506954164648253059166264980014713864005362677547272025874822953741658875573347353714860748794245457975721896124496428341953119228720381758691795304591856741716080781288076913298042144430984964453836298305124418903417992552705210261686760876928250469800957204668539449762986574901032139905969019968992818821844720146930697023177753396928188721145757904985737073930233114864663802844966393602142717000918061008393755124518418444688781975103875221203910698584425747132147625605503756567295561204934073568012811826109795429289712361053805883653558853044624104058643098159980099063960125309074190272270704651601404154946510335800934051591222124897421427296895825340492041094282196924235465487316938598929049688640977071888199425670145855321853879315043596811876423791058958245563015067309145712359158226426533199392855989194689659774210865599775962006268440248329507084067056383,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28; s = G.29; t = G.30;
 
Permutation group:Degree $36$ $\langle(1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30), (4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33), (1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30) >;
 
Copy content gap:G := Group( (1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30), (4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33), (1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30) );
 
Copy content sage:G = PermutationGroup(['(1,33,14,21,3,31,15,19)(2,32,13,20)(4,17)(5,18,6,16)(7,26)(8,27)(9,25)(10,34,12,36)(11,35)(22,23)(28,30)', '(4,17,30,5,18,28,6,16,29)(7,9)(13,27,14,25)(15,26)(19,21)(22,34)(23,36,24,35)(31,32,33)', '(1,16,7,12,15,5,31,36,3,18,8,10,14,4,32,34)(2,17,9,11,13,6,33,35)(19,22,26,29,21,24,25,28,20,23,27,30)'])
 
Transitive group: 36T119056 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.D_4)$ . $D_4$ (2) $C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.D_4)$ $(C_3^{12}.C_2^8.C_3^4.D_8.C_2)$ . $C_2$ (2) all 17

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 30 normal subgroups (16 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3346 \times 3346$ character table is not available for this group.

Rational character table

The $2793 \times 2793$ rational character table is not available for this group.