Properties

Label 663552.ga
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $20$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19), (2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20) >;
 
Copy content gap:G := Group( (1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19), (2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19)', '(2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50494937773683635087431013803166072111877205742079919589872636724622601792843638153934495291530300425058454535021866313557601992161148496360559277975166196917972907494087747859156790332825683715272248811876936606121630982105776247779849320909212971540362227362978733007759123061469183421588917520877651721347743552378559097567903709142878387312116652630628022678494661897202773545307031689813833525711208169962164009322019918079089037888813111632264011627899746028521566006546486336357078909511351816342964007261325952,663552)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 

Group information

Description:$A_4^3.C_2\wr S_3$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$A_4^3.C_2^6:S_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 9663 5336 101952 122664 27648 36864 193536 110592 55296 663552
Conjugacy classes   1 52 4 75 79 8 2 41 6 8 276
Divisions 1 52 4 75 75 8 2 37 4 4 262
Autjugacy classes 1 42 4 43 63 4 1 21 2 2 183

Minimal presentations

Permutation degree:$20$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid c^{2}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4937208, 12250541, 86, 10701842, 7054560, 8979, 21162980, 10633945, 26527671, 12397373, 905, 242, 176278, 15870423, 872, 27606102, 1239527, 681196, 3644, 346, 17155591, 3288, 117545, 3339, 4869080, 33334441, 23102430, 159791, 79942, 35895, 450, 97929, 49400666, 444763, 49020, 24557, 3473722, 20155635, 27527192, 289537, 144816, 60683, 2731979, 12690460, 2115117, 51470, 113911, 12948, 2339093, 23914, 59222029, 1593678, 14805551, 1028275, 479940, 84602894, 6995191, 16716828, 3525185, 1762642, 881396, 477493, 49110, 43007, 101523471, 80784032, 17625649, 1880130, 940115, 783477, 430982, 91543, 13224, 47941648, 91388769, 9207590, 4494612, 582742, 374679, 180488, 76465]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(50494937773683635087431013803166072111877205742079919589872636724622601792843638153934495291530300425058454535021866313557601992161148496360559277975166196917972907494087747859156790332825683715272248811876936606121630982105776247779849320909212971540362227362978733007759123061469183421588917520877651721347743552378559097567903709142878387312116652630628022678494661897202773545307031689813833525711208169962164009322019918079089037888813111632264011627899746028521566006546486336357078909511351816342964007261325952,663552); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50494937773683635087431013803166072111877205742079919589872636724622601792843638153934495291530300425058454535021866313557601992161148496360559277975166196917972907494087747859156790332825683715272248811876936606121630982105776247779849320909212971540362227362978733007759123061469183421588917520877651721347743552378559097567903709142878387312116652630628022678494661897202773545307031689813833525711208169962164009322019918079089037888813111632264011627899746028521566006546486336357078909511351816342964007261325952,663552)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(50494937773683635087431013803166072111877205742079919589872636724622601792843638153934495291530300425058454535021866313557601992161148496360559277975166196917972907494087747859156790332825683715272248811876936606121630982105776247779849320909212971540362227362978733007759123061469183421588917520877651721347743552378559097567903709142878387312116652630628022678494661897202773545307031689813833525711208169962164009322019918079089037888813111632264011627899746028521566006546486336357078909511351816342964007261325952,663552)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 
Permutation group:Degree $20$ $\langle(1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19), (2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19), (2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20) >;
 
Copy content gap:G := Group( (1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19), (2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6,5,7,10,9,3)(8,11,12)(13,15,16)(18,19)', '(2,3,5,4)(6,8,10)(7,9)(11,12)(13,14,15,16)(17,18)(19,20)'])
 
Transitive group: 36T33313 36T33314 36T33315 36T33316 all 8
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $A_4^3$ . $(C_2\wr S_3)$ $C_2^4$ . $(A_4^3:S_4)$ $C_2^7$ . $(C_6^3:S_4)$ $C_2^{10}$ . $(C_3^3:S_4)$ all 27

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 33 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $A_4^3.C_2^3:A_4$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{10}$ $G/\operatorname{Fit} \simeq$ $C_3^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^3.C_2\wr S_3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_2\times C_3^3:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2.C_2^6.C_2^6$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$

Subgroup diagram and profile

Series

Derived series $A_4^3.C_2\wr S_3$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^4$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^3.C_2\wr S_3$ $\rhd$ $A_4^3.C_2^2\wr C_3$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $A_4:S_4^2.A_4$ $\rhd$ $C_2^6.C_3^3.C_2^4$ $\rhd$ $A_4:S_4^2$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^3.C_2\wr S_3$ $\rhd$ $A_4^3.C_2^3:A_4$ $\rhd$ $A_4:S_4^2.A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 12 larger groups in the database.

This group is a maximal quotient of 10 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $276 \times 276$ character table is not available for this group.

Rational character table

The $262 \times 262$ rational character table is not available for this group.