Properties

Label 663552.cn
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20), (1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20), (1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18) >;
 
Copy content gap:G := Group( (1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20), (1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20), (1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20)', '(1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20)', '(1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5999915569483379255510122540632646958014766712016758329519488967860727373454586410765756158612226793752283272346157048699282435404555728469925233850288001211771453278395475023255622572049476296233122995793851516023386092143091997364604266226450433893314467111995313326921044619398426354089392850390626966794734019996778349545257815373028938694201632849703982970216630341603421553722621746691627159812173965708752859562330103908629629145051201383644860453491520723726032808368396408047335308902691144383841429965784621329343140677290308136000954556793891839729260831007552006118003255547868685206569494246356158275613691767722312529655197125842742224916583608064583537984,663552)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$A_4^2\wr C_2.C_2^2.C_2^2$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times C_2^8.C_3^4.C_2.C_2^5$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 5983 6560 146592 98912 248832 156672 663552
Conjugacy classes   1 22 8 39 50 18 26 164
Divisions 1 22 8 36 50 11 23 151
Autjugacy classes 1 19 7 28 40 8 12 115

Minimal presentations

Permutation degree:$20$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{6}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 11075364, 9362309, 86, 28299086, 7347708, 18505523, 17452356, 1897101, 190, 35430724, 14934181, 11016718, 54753605, 25943110, 1878879, 3634724, 3409831, 294, 59145862, 27784143, 16070752, 2744673, 3200936, 15906567, 44246808, 14501993, 3799354, 134715, 221228, 684733, 398, 47547512, 5434585, 17890026, 22091, 1191657, 529796, 34486889, 29199226, 24418843, 4345260, 3442577, 706954, 1078761, 68468, 6775, 502, 114485898, 49100243, 23104268, 107773, 1911983, 653116, 67858571, 15422428, 11897325, 3833630, 4164127, 1255920, 451769, 73570, 11163, 3437004, 95501, 13461615, 1575368, 87647, 35950, 69297997, 34546206, 23442095, 10487296, 5860593, 2210642, 925459, 351420, 192929, 61570, 25887, 84602894, 19828831, 19498368, 495785, 4874662, 1184319, 812546, 73557519, 74732576, 35310001, 21885186, 8122547, 3206980, 1339173, 597446, 279223, 102984, 39353, 23970832, 32210817, 3370963, 2809164, 2934029, 468298, 489123, 78182, 81667, 13191]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(5999915569483379255510122540632646958014766712016758329519488967860727373454586410765756158612226793752283272346157048699282435404555728469925233850288001211771453278395475023255622572049476296233122995793851516023386092143091997364604266226450433893314467111995313326921044619398426354089392850390626966794734019996778349545257815373028938694201632849703982970216630341603421553722621746691627159812173965708752859562330103908629629145051201383644860453491520723726032808368396408047335308902691144383841429965784621329343140677290308136000954556793891839729260831007552006118003255547868685206569494246356158275613691767722312529655197125842742224916583608064583537984,663552); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5999915569483379255510122540632646958014766712016758329519488967860727373454586410765756158612226793752283272346157048699282435404555728469925233850288001211771453278395475023255622572049476296233122995793851516023386092143091997364604266226450433893314467111995313326921044619398426354089392850390626966794734019996778349545257815373028938694201632849703982970216630341603421553722621746691627159812173965708752859562330103908629629145051201383644860453491520723726032808368396408047335308902691144383841429965784621329343140677290308136000954556793891839729260831007552006118003255547868685206569494246356158275613691767722312529655197125842742224916583608064583537984,663552)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5999915569483379255510122540632646958014766712016758329519488967860727373454586410765756158612226793752283272346157048699282435404555728469925233850288001211771453278395475023255622572049476296233122995793851516023386092143091997364604266226450433893314467111995313326921044619398426354089392850390626966794734019996778349545257815373028938694201632849703982970216630341603421553722621746691627159812173965708752859562330103908629629145051201383644860453491520723726032808368396408047335308902691144383841429965784621329343140677290308136000954556793891839729260831007552006118003255547868685206569494246356158275613691767722312529655197125842742224916583608064583537984,663552)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $20$ $\langle(1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20), (1,3)(2,6,12,16)(4,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20), (1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20), (1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18) >;
 
Copy content gap:G := Group( (1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20), (1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20), (1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,12,4,10,15,9)(3,8,13,7,11,6,14,16)(19,20)', '(1,3)(2,6,12,16)(4,11)(5,13,15,14)(7,10)(8,9)(17,19,18,20)', '(1,2,4,9,15,12,5,10)(3,7,13,8,14,16,11,6)(17,18)'])
 
Transitive group: 24T20599 24T20605 36T33424 36T33435 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_3^4:Q_8)$ . $C_2$ $(C_2^8.C_3^3.D_6)$ . $D_4$ $(C_2^9.C_3^4:D_4)$ . $C_2$ $(C_2^9.C_3^4:D_4)$ . $C_2$ all 19

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 26 normal subgroups (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2:\POPlus(4,3).C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^3.D_6$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2:\POPlus(4,3).C_2^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4:D_4:C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2\wr C_2.C_2^2.C_2^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4:D_4:C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^5.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2\wr C_2.C_2^2.C_2^2$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2\wr C_2.C_2^2.C_2^2$ $\rhd$ $A_4^2.(A_4^2:C_4\times C_2^2)$ $\rhd$ $C_2^8.C_3^4.C_2^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2\wr C_2.C_2^2.C_2^2$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $164 \times 164$ character table is not available for this group.

Rational character table

The $151 \times 151$ rational character table is not available for this group.