Properties

Label 660602880.c
Order \( 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{20} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $64$
Trans deg. $64$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63), (3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64), (3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62) >;
 
Copy content gap:G := Group( (1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63), (3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64), (3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62) );
 
Copy content sage:G = PermutationGroup(['(1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)', '(2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64)', '(2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)', '(2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)', '(1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)', '(2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)', '(2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64)', '(1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)', '(1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63)', '(1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63)', '(3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64)', '(3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)', '(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64)', '(3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62)'])
 

Group information

Description:$C_2^{10}.C_2^5.A_8$
Order: \(660602880\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(330301440\)\(\medspace = 2^{20} \cdot 3^{2} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $A_8$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 10 12 14 15 20 24 28 30 60
Elements 1 206975 530432 39393152 5505024 64153600 2949120 94617600 27525120 127074304 79626240 11010048 11010048 13762560 106168320 55050240 22020096 660602880
Conjugacy classes   1 30 2 108 1 23 2 24 3 24 18 2 1 1 12 6 2 260
Divisions 1 30 2 108 1 23 1 24 3 24 9 1 1 1 6 3 1 239
Autjugacy classes 1 30 2 108 1 23 2 24 3 24 18 2 1 1 12 6 2 260

Minimal presentations

Permutation degree:$64$
Transitive degree:$64$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $64$ $\langle(1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63), (3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64), (3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62) >;
 
Copy content gap:G := Group( (1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64), (2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63), (1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63), (3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64), (3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62) );
 
Copy content sage:G = PermutationGroup(['(1,3)(5,7)(9,11)(13,15)(17,19)(21,23)(25,27)(29,31)(33,35)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)', '(2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64)', '(2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)', '(2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)', '(1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)', '(2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(50,58)(52,60)(54,62)(56,64)', '(2,18)(4,20)(6,22)(8,24)(10,26)(12,28)(14,30)(16,32)(34,50)(36,52)(38,54)(40,56)(42,58)(44,60)(46,62)(48,64)', '(1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)', '(1,17)(3,19)(5,21)(7,23)(9,25)(11,27)(13,29)(15,31)(33,49)(35,51)(37,53)(39,55)(41,57)(43,59)(45,61)(47,63)', '(1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63)', '(3,7)(4,8)(11,15)(12,16)(19,23)(20,24)(27,31)(28,32)(35,39)(36,40)(43,47)(44,48)(51,55)(52,56)(59,63)(60,64)', '(3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)', '(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(21,53)(22,54)(23,55)(24,56)(29,61)(30,62)(31,63)(32,64)', '(3,17,9,5)(4,18,10,6)(7,19,25,13)(8,20,26,14)(11,21)(12,22)(15,23,27,29)(16,24,28,30)(35,49,41,37)(36,50,42,38)(39,51,57,45)(40,52,58,46)(43,53)(44,54)(47,55,59,61)(48,56,60,62)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^9.C_2^6)$ . $A_8$ $C_2^{10}$ . $(C_2^5.A_8)$ $C_2$ . $(C_2^9.C_2^5.A_8)$ $C_2^2$ . $(C_2^{12}.C_2.A_8)$ all 14
Aut. group: $\Aut(D_4\times C_2^4)$

Elements of the group are displayed as permutations of degree 64.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 17 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2^6.C_2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $260 \times 260$ character table is not available for this group.

Rational character table

The $239 \times 239$ rational character table is not available for this group.