Properties

Label 6400000000.dnk
Order \( 2^{14} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. not computed
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27), (1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35), (1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39), (1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36), (1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31) >;
 
Copy content gap:G := Group( (1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27), (1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35), (1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39), (1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36), (1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31) );
 
Copy content sage:G = PermutationGroup(['(1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27)', '(1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35)', '(1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39)', '(1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36)', '(1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1113069946909122827832460708967284641587594393776437007449249466662576037959659265806668362750099387243998853561219779910956368150966999555801221307211497738990988966978771405150372518624860074443178330090777026217828188518248228828144960600531202286641668663885546786712493752704105306833888780674249935910979959305762463287172584237208289890240348922502419764666467540941456915138382769691035766061935313102843096559942642639783785126236887178934925096049346309038043128865265739886675744372644617823750435834118433072131992133898585969871814922864994199937470328657035027638271968241669070021299432995436749477933839768369752237400892439110037286084383122391159180484686151110569083511118007661680557907696106799442500692239149194736450470573756390863455751371025136163932055374843483397738922784789483355607810373718673673536848595726724273998035882114562384139930181837862668059382192173956764506698200366163315392187640042068640574505923405602402350589891452934624825354785389099625432634148620265114529480013376042653553749996843824772009414444535949873493024713052195053446543472833566510507389750492776623636114173599232415236733755699626803951956602173398262999107583337561633407071077408634060542379053210838507435893195378469158375755602759706264191351254171131655257172949884650890736954456435695112087498943690707390447762364636219122060644568021307592560030898187646250528426790459705397358322496453597982502838365453392573664969197408389366136660250978292716660362386127123770117608856261120227086854332681860650597371569801996963755495506688161968839253751988440157409171805742784446796461206823699102780808161441134358639776328370995918598194852387672059968492831818368811818945769993692739805987108173700093328248760463240575712293635932638217466253280111932947618118154615020977092820853989348060736629120892810907281231067864162435012195675925758950113117226921664143364827660655462934967367581470946697488467493415905349387805063198509454771983929534244353952042280734831582476887922928876304534563968621246896164444875187023349469605641699318884117617701531261992034772821459588193677509436609196853938344906019186748098852743155789235045038455627278183055359,6400000000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 

Group information

Description:$C_5^4:C_2.F_5\wr C_4.C_2^3$
Order: \(6400000000\)\(\medspace = 2^{14} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 770975 299452000 390624 1835200000 161338400 800000000 1338048000 1964800000 6400000000
Conjugacy classes   1 16 180 66 99 178 8 550 88 1186
Divisions 1 16 116 66 64 178 4 319 49 813
Autjugacy classes 1 14 132 40 66 113 4 355 53 778

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $5$
Inequivalent generating 5-tuples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid e^{4}=g^{4}=i^{20}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 5, 5, 5, 5, 5, 5, 56349497952, 172010956041, 111, 337269817898, 37073516086, 60515718211, 52524311161, 101284001503, 245, 160336846564, 27076875786, 170252319208, 22078848092, 293621499077, 183143620731, 55142234449, 69150255575, 25639452261, 8536248979, 928643585414, 370899745244, 10441103954, 10623532376, 2504213190, 17193621792, 446, 1074027108359, 463976967197, 172838831667, 117984658249, 23230064095, 27626836277, 374118852104, 528307262238, 28210976692, 19995839498, 32050684608, 23995194022, 14463707684, 8131451886, 4223008336, 443771444169, 577631070751, 33909469493, 39031463755, 77863533537, 20359122199, 8227245981, 8458562803, 3864546145, 647, 37193254922, 266512671776, 360665276982, 92682701132, 43308180706, 14985081528, 8843992750, 158754100, 1073981666, 802666685579, 242062520865, 387897776695, 180815112269, 45385663587, 29455871929, 16197921839, 9317077605, 2250128155, 3068760497, 91961463, 781, 131920003084, 190262172706, 377833803832, 65601975374, 113847512164, 33456820090, 6235495696, 8051106086, 2731734908, 2787706274, 298302808, 60160376, 140184174605, 393841541667, 13910679609, 131823605839, 11830748261, 3791366779, 28821270161, 13415770535, 5554723517, 3696332851, 261855673, 461689175, 81067417, 915, 247357454, 13066859556, 52483031098, 247386163280, 15974323302, 4797746044, 25318254866, 11084842728, 2748514750, 2490761012, 192179034, 918185656, 31386578, 982, 303224717327, 153622937637, 12083658811, 221953065041, 3972137063, 9475772541, 11783540883, 5891094697, 4119830719, 1561584853, 112875, 836056577, 23744512016, 847442399270, 55531520060, 27765760082, 28723304, 2944128126, 7180948, 4787370, 1795392, 830280214, 598636, 82280258, 149880, 15262, 15284, 178746163217, 441188352039, 6690816061, 9123840083, 152064105, 7364966527, 1191168149, 399168171, 107712193, 4752215, 3168237, 792259, 792281, 4791903, 79525, 2143983181842, 14981120040, 600528896062, 300264448084, 1926144106, 81852184960, 1043328150, 133760172, 33440194, 4059616216, 16720238, 1172908260, 21736282, 1505104, 2173926, 857365217299, 1243996160041, 226856960063, 123340800085, 3322880107, 19330263169, 718080151, 464640173, 168960195, 2442880217, 88000239, 456720261, 4620283, 3784305, 462327, 771742777364, 359841140778, 251966668864, 129720729686, 28621824108, 23294971522, 8944320152, 1456224174, 1260336196, 2678121818, 462000240, 509493862, 126126284, 19311906, 12612928, 212361543701, 721638703147, 605494067265, 299550310487, 75147776109, 35083541635, 12359424153, 5598912175, 9095328197, 2165222619, 2420000241, 1188026663, 197714285, 57160707, 19771729]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.10, G.12, G.14, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "i4", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(1113069946909122827832460708967284641587594393776437007449249466662576037959659265806668362750099387243998853561219779910956368150966999555801221307211497738990988966978771405150372518624860074443178330090777026217828188518248228828144960600531202286641668663885546786712493752704105306833888780674249935910979959305762463287172584237208289890240348922502419764666467540941456915138382769691035766061935313102843096559942642639783785126236887178934925096049346309038043128865265739886675744372644617823750435834118433072131992133898585969871814922864994199937470328657035027638271968241669070021299432995436749477933839768369752237400892439110037286084383122391159180484686151110569083511118007661680557907696106799442500692239149194736450470573756390863455751371025136163932055374843483397738922784789483355607810373718673673536848595726724273998035882114562384139930181837862668059382192173956764506698200366163315392187640042068640574505923405602402350589891452934624825354785389099625432634148620265114529480013376042653553749996843824772009414444535949873493024713052195053446543472833566510507389750492776623636114173599232415236733755699626803951956602173398262999107583337561633407071077408634060542379053210838507435893195378469158375755602759706264191351254171131655257172949884650890736954456435695112087498943690707390447762364636219122060644568021307592560030898187646250528426790459705397358322496453597982502838365453392573664969197408389366136660250978292716660362386127123770117608856261120227086854332681860650597371569801996963755495506688161968839253751988440157409171805742784446796461206823699102780808161441134358639776328370995918598194852387672059968492831818368811818945769993692739805987108173700093328248760463240575712293635932638217466253280111932947618118154615020977092820853989348060736629120892810907281231067864162435012195675925758950113117226921664143364827660655462934967367581470946697488467493415905349387805063198509454771983929534244353952042280734831582476887922928876304534563968621246896164444875187023349469605641699318884117617701531261992034772821459588193677509436609196853938344906019186748098852743155789235045038455627278183055359,6400000000); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1113069946909122827832460708967284641587594393776437007449249466662576037959659265806668362750099387243998853561219779910956368150966999555801221307211497738990988966978771405150372518624860074443178330090777026217828188518248228828144960600531202286641668663885546786712493752704105306833888780674249935910979959305762463287172584237208289890240348922502419764666467540941456915138382769691035766061935313102843096559942642639783785126236887178934925096049346309038043128865265739886675744372644617823750435834118433072131992133898585969871814922864994199937470328657035027638271968241669070021299432995436749477933839768369752237400892439110037286084383122391159180484686151110569083511118007661680557907696106799442500692239149194736450470573756390863455751371025136163932055374843483397738922784789483355607810373718673673536848595726724273998035882114562384139930181837862668059382192173956764506698200366163315392187640042068640574505923405602402350589891452934624825354785389099625432634148620265114529480013376042653553749996843824772009414444535949873493024713052195053446543472833566510507389750492776623636114173599232415236733755699626803951956602173398262999107583337561633407071077408634060542379053210838507435893195378469158375755602759706264191351254171131655257172949884650890736954456435695112087498943690707390447762364636219122060644568021307592560030898187646250528426790459705397358322496453597982502838365453392573664969197408389366136660250978292716660362386127123770117608856261120227086854332681860650597371569801996963755495506688161968839253751988440157409171805742784446796461206823699102780808161441134358639776328370995918598194852387672059968492831818368811818945769993692739805987108173700093328248760463240575712293635932638217466253280111932947618118154615020977092820853989348060736629120892810907281231067864162435012195675925758950113117226921664143364827660655462934967367581470946697488467493415905349387805063198509454771983929534244353952042280734831582476887922928876304534563968621246896164444875187023349469605641699318884117617701531261992034772821459588193677509436609196853938344906019186748098852743155789235045038455627278183055359,6400000000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1113069946909122827832460708967284641587594393776437007449249466662576037959659265806668362750099387243998853561219779910956368150966999555801221307211497738990988966978771405150372518624860074443178330090777026217828188518248228828144960600531202286641668663885546786712493752704105306833888780674249935910979959305762463287172584237208289890240348922502419764666467540941456915138382769691035766061935313102843096559942642639783785126236887178934925096049346309038043128865265739886675744372644617823750435834118433072131992133898585969871814922864994199937470328657035027638271968241669070021299432995436749477933839768369752237400892439110037286084383122391159180484686151110569083511118007661680557907696106799442500692239149194736450470573756390863455751371025136163932055374843483397738922784789483355607810373718673673536848595726724273998035882114562384139930181837862668059382192173956764506698200366163315392187640042068640574505923405602402350589891452934624825354785389099625432634148620265114529480013376042653553749996843824772009414444535949873493024713052195053446543472833566510507389750492776623636114173599232415236733755699626803951956602173398262999107583337561633407071077408634060542379053210838507435893195378469158375755602759706264191351254171131655257172949884650890736954456435695112087498943690707390447762364636219122060644568021307592560030898187646250528426790459705397358322496453597982502838365453392573664969197408389366136660250978292716660362386127123770117608856261120227086854332681860650597371569801996963755495506688161968839253751988440157409171805742784446796461206823699102780808161441134358639776328370995918598194852387672059968492831818368811818945769993692739805987108173700093328248760463240575712293635932638217466253280111932947618118154615020977092820853989348060736629120892810907281231067864162435012195675925758950113117226921664143364827660655462934967367581470946697488467493415905349387805063198509454771983929534244353952042280734831582476887922928876304534563968621246896164444875187023349469605641699318884117617701531261992034772821459588193677509436609196853938344906019186748098852743155789235045038455627278183055359,6400000000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Permutation group:Degree $40$ $\langle(1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27), (1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35), (1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39), (1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36), (1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31) >;
 
Copy content gap:G := Group( (1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27), (1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35), (1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39), (1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36), (1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31) );
 
Copy content sage:G = PermutationGroup(['(1,14,3,11,2,15,5,13)(4,12)(6,40,7,37,9,36,8,39)(10,38)(16,35,20,34,17,31,18,32)(19,33)(21,28)(22,26,23,29,25,30,24,27)', '(1,37,4,39,5,38,2,36)(3,40)(6,15,9,13,8,12,10,14)(7,11)(21,24)(22,23)(26,29)(27,28)(31,33)(34,35)', '(1,27,5,26)(2,28,4,30)(3,29)(6,25,10,23,9,21,8,24,7,22)(11,20,13,17,15,19,12,16,14,18)(31,38)(32,40,35,36)(33,37,34,39)', '(1,33,2,34,3,35,4,31,5,32)(6,19,9,16,7,18,10,20,8,17)(11,23,15,21,14,24,13,22,12,25)(26,39,30,37,29,40,28,38,27,36)', '(1,23,40,20,2,21,37,18,3,24,39,16,4,22,36,19,5,25,38,17)(6,29,15,32,8,27,11,34)(7,28,13,33)(9,26,14,35,10,30,12,31)'])
 
Transitive group: 40T274854 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^4:C_2.F_5\wr C_4)$ . $C_2^3$ (4) $(C_5^8.C_4^2.D_4^2:Q_8)$ . $C_2$ (2) $(C_5^8.C_4^3)$ . $(D_4^2:C_2^2)$ (2) $(C_5^8.C_4^3)$ . $(D_4^2:C_2^2)$ (2) all 198

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 744 normal subgroups (394 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^2\times C_4^3).C_2.C_2^5$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1186 \times 1186$ character table is not available for this group.

Rational character table

The $813 \times 813$ rational character table is not available for this group.