Properties

Label 6400000000.ctw
Order \( 2^{14} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37), (1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26), (1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27), (1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33) >;
 
Copy content gap:G := Group( (1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37), (1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26), (1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27), (1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33) );
 
Copy content sage:G = PermutationGroup(['(1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37)', '(1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26)', '(1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27)', '(1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2175981038419932580570167436361282196451042879219359058339329852138192423950019273477919610256826985965681385692300680420700157513652856870911710296030338361419745835100623367031629638811765453101323465022572923880945377235911508569573560875282700481938741139380429307849844123517242758217811399150657860810073617559580104624348579908486313880940499633313267870318626191319863703837327634188957737705315334785762844780384979463639301588171041911282077654663882901125459105688464344017642753804878726997229919990926340601151577179043793090532848287616416834306833896809514382322526803118857941689230870931575471551830142122335404153795248668207946543927179552429811802256020540731985099709951044932439814254106413198796259775999715744000780247342392903252665786378062519718878861007042150773982735605739436160298553185251771984301185089550626650443927701942902683101104851319161130495637877297875625549248302851718549244130697576779484860970801311071202054386227410380105011095270313787107599167843222250212480552549393248140944462477938172987235719223717623790906926995000541453218952455086333999862099623398889125552876640143023764238566392012822438649043658303426104220673518303323258928627482053936047153619821967097848515851799084411667239142925060015154458285093925377517366723942759879126507869101276649876311095073647726925759123578320551738706748001682689838746458898285724825826861402730313061440093170758192650147778430466165054461691429369597501687269094995624640835138181132824841077759453901776566120785658104049623294691851944820654233974283961030921812073663118740336259943167762627388993740170296073357873744157329612193706647955121747887467723592364210293731359587480383646243451645783004972432493294240987676236188907109690331390915657118839712741202457651676668312691209091852326849346173555752868031591778330757906133183929393100685341287928524496392162089424808729218762607541505149426269374946852258815,6400000000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.11; g = G.14; h = G.16; i = G.19; j = G.20; k = G.21; l = G.22;
 

Group information

Description:$C_5^7.(C_2^3\times F_5).D_4^2:D_4$
Order: \(6400000000\)\(\medspace = 2^{14} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 897375 266212000 390624 2128000000 136212000 800000000 1596288000 1472000000 6400000000
Conjugacy classes   1 16 136 76 81 251 4 485 76 1126
Divisions 1 16 94 76 49 251 2 298 40 827
Autjugacy classes 1 16 134 54 67 175 2 442 54 945

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{4}=e^{20}=f^{20}=g^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 2, 2, 5, 5, 5, 5, 5, 21816820784, 197030868585, 111, 151134112538, 178, 414974800067, 19682046981, 434580898404, 176818429066, 6781216248, 61193658530, 24992281692, 491110122629, 71135243547, 68879588497, 55764099671, 13805228277, 379, 62826096262, 66943627548, 40378063314, 16838001560, 2251130822, 105042133511, 197627820573, 14963632691, 13112019785, 8043981535, 9214186549, 3491843307, 513, 983185213832, 189982805790, 258114003892, 109435943306, 22179057216, 32465732230, 348487268, 580, 236544000009, 2252800031, 54540288053, 28235, 13635072097, 10679, 7181, 119350018842, 168278064800, 243533780566, 53719585996, 47935817962, 38410414360, 2826569822, 3771352364, 4801301966, 714, 263335801355, 182478861345, 124490741815, 120975866957, 63022164579, 17149820281, 2492181263, 6918964965, 2143727707, 781, 7031664652, 61501513250, 228728980536, 226970698318, 113851063140, 28371566202, 14190176166, 3546445948, 1659359348429, 434324265795, 419137596473, 17912294479, 26537792613, 10431344123, 6152361745, 384519687, 729405789, 765497273, 304307335, 48357817, 915, 1215971665934, 1003967078436, 257328741178, 40896768080, 19683882342, 4817472124, 33792146, 16294370568, 1497012190, 11405034, 74586856, 1037838793743, 952509234725, 443669135419, 128251904081, 80413696103, 5119488125, 5916416147, 7553948329, 1315776191, 422470635, 374563457, 163697879, 39955821, 1374883, 1049, 2187712413584, 275425292774, 424817085500, 202163456082, 52635264104, 12674112126, 2698784148, 7764300010, 596904192, 561149836, 109283058, 115977680, 26038182, 1574864, 1116, 1901813760017, 62853120039, 471805931581, 304128083, 202752105, 101376127, 4910526891, 12672193, 1330336296978, 242736947240, 165862400062, 1070080084, 124396800106, 133760172, 6688238, 25916304, 17068, 17090, 2626860093459, 578615910441, 288358400063, 10137600085, 42803200107, 16614400129, 1689600151, 1302400173, 422400195, 209440239, 21120261, 44792305, 1012349, 88371, 2758202388500, 535166607402, 390297600064, 46126080086, 51744000108, 7835520130, 7687680152, 2845920174, 1921920196, 99792240, 96096262, 51282306, 462350, 462372, 1062670585877, 738524959787, 236656640065, 231700480087, 131648000109, 22302720131, 14481280153, 19785920175, 3620320197, 274912241, 181016263, 33299507, 4114351, 2420373]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.8, G.11, G.14, G.16, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "e4", "f", "f2", "f4", "g", "g2", "h", "h2", "h4", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(2175981038419932580570167436361282196451042879219359058339329852138192423950019273477919610256826985965681385692300680420700157513652856870911710296030338361419745835100623367031629638811765453101323465022572923880945377235911508569573560875282700481938741139380429307849844123517242758217811399150657860810073617559580104624348579908486313880940499633313267870318626191319863703837327634188957737705315334785762844780384979463639301588171041911282077654663882901125459105688464344017642753804878726997229919990926340601151577179043793090532848287616416834306833896809514382322526803118857941689230870931575471551830142122335404153795248668207946543927179552429811802256020540731985099709951044932439814254106413198796259775999715744000780247342392903252665786378062519718878861007042150773982735605739436160298553185251771984301185089550626650443927701942902683101104851319161130495637877297875625549248302851718549244130697576779484860970801311071202054386227410380105011095270313787107599167843222250212480552549393248140944462477938172987235719223717623790906926995000541453218952455086333999862099623398889125552876640143023764238566392012822438649043658303426104220673518303323258928627482053936047153619821967097848515851799084411667239142925060015154458285093925377517366723942759879126507869101276649876311095073647726925759123578320551738706748001682689838746458898285724825826861402730313061440093170758192650147778430466165054461691429369597501687269094995624640835138181132824841077759453901776566120785658104049623294691851944820654233974283961030921812073663118740336259943167762627388993740170296073357873744157329612193706647955121747887467723592364210293731359587480383646243451645783004972432493294240987676236188907109690331390915657118839712741202457651676668312691209091852326849346173555752868031591778330757906133183929393100685341287928524496392162089424808729218762607541505149426269374946852258815,6400000000); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.11; g := G.14; h := G.16; i := G.19; j := G.20; k := G.21; l := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2175981038419932580570167436361282196451042879219359058339329852138192423950019273477919610256826985965681385692300680420700157513652856870911710296030338361419745835100623367031629638811765453101323465022572923880945377235911508569573560875282700481938741139380429307849844123517242758217811399150657860810073617559580104624348579908486313880940499633313267870318626191319863703837327634188957737705315334785762844780384979463639301588171041911282077654663882901125459105688464344017642753804878726997229919990926340601151577179043793090532848287616416834306833896809514382322526803118857941689230870931575471551830142122335404153795248668207946543927179552429811802256020540731985099709951044932439814254106413198796259775999715744000780247342392903252665786378062519718878861007042150773982735605739436160298553185251771984301185089550626650443927701942902683101104851319161130495637877297875625549248302851718549244130697576779484860970801311071202054386227410380105011095270313787107599167843222250212480552549393248140944462477938172987235719223717623790906926995000541453218952455086333999862099623398889125552876640143023764238566392012822438649043658303426104220673518303323258928627482053936047153619821967097848515851799084411667239142925060015154458285093925377517366723942759879126507869101276649876311095073647726925759123578320551738706748001682689838746458898285724825826861402730313061440093170758192650147778430466165054461691429369597501687269094995624640835138181132824841077759453901776566120785658104049623294691851944820654233974283961030921812073663118740336259943167762627388993740170296073357873744157329612193706647955121747887467723592364210293731359587480383646243451645783004972432493294240987676236188907109690331390915657118839712741202457651676668312691209091852326849346173555752868031591778330757906133183929393100685341287928524496392162089424808729218762607541505149426269374946852258815,6400000000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.11; g = G.14; h = G.16; i = G.19; j = G.20; k = G.21; l = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2175981038419932580570167436361282196451042879219359058339329852138192423950019273477919610256826985965681385692300680420700157513652856870911710296030338361419745835100623367031629638811765453101323465022572923880945377235911508569573560875282700481938741139380429307849844123517242758217811399150657860810073617559580104624348579908486313880940499633313267870318626191319863703837327634188957737705315334785762844780384979463639301588171041911282077654663882901125459105688464344017642753804878726997229919990926340601151577179043793090532848287616416834306833896809514382322526803118857941689230870931575471551830142122335404153795248668207946543927179552429811802256020540731985099709951044932439814254106413198796259775999715744000780247342392903252665786378062519718878861007042150773982735605739436160298553185251771984301185089550626650443927701942902683101104851319161130495637877297875625549248302851718549244130697576779484860970801311071202054386227410380105011095270313787107599167843222250212480552549393248140944462477938172987235719223717623790906926995000541453218952455086333999862099623398889125552876640143023764238566392012822438649043658303426104220673518303323258928627482053936047153619821967097848515851799084411667239142925060015154458285093925377517366723942759879126507869101276649876311095073647726925759123578320551738706748001682689838746458898285724825826861402730313061440093170758192650147778430466165054461691429369597501687269094995624640835138181132824841077759453901776566120785658104049623294691851944820654233974283961030921812073663118740336259943167762627388993740170296073357873744157329612193706647955121747887467723592364210293731359587480383646243451645783004972432493294240987676236188907109690331390915657118839712741202457651676668312691209091852326849346173555752868031591778330757906133183929393100685341287928524496392162089424808729218762607541505149426269374946852258815,6400000000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.11; g = G.14; h = G.16; i = G.19; j = G.20; k = G.21; l = G.22;
 
Permutation group:Degree $40$ $\langle(1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37), (1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26), (1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27), (1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33) >;
 
Copy content gap:G := Group( (1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37), (1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26), (1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27), (1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33) );
 
Copy content sage:G = PermutationGroup(['(1,28,4,29,5,26,2,30)(3,27)(6,21,10,24,7,23,8,25)(9,22)(11,17,14,18,13,16,15,20)(12,19)(31,38,34,39,35,36,32,40)(33,37)', '(1,15)(2,14,4,12,5,11,3,13)(6,40,9,36,8,39,10,38)(7,37)(16,31)(17,34,19,35,20,33,18,32)(21,27,22,29,25,30,24,28)(23,26)', '(1,6,4,7,2,8,5,9,3,10)(11,37,13,38,15,39,12,40,14,36)(16,31,20,34,18,35,19,32)(17,33)(21,28)(22,30,24,29,25,26,23,27)', '(1,7,4,8,3,6,5,10)(2,9)(11,40)(12,36,13,37,15,39,14,38)(16,30,19,29,20,27,17,28)(18,26)(21,32,22,35,25,34,24,31)(23,33)'])
 
Transitive group: 40T274346 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^5)$ . $(D_4^2:D_4)$ (2) $(C_5^8.C_4^3)$ . $(C_2^5.D_4)$ (2) $(C_5^8.C_4^3.C_2^4.D_4)$ . $C_2$ $(C_5^8.C_4^3)$ . $(D_4^2:C_2^2)$ (2) all 82

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 292 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2\times C_4^4).C_2.C_2^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1126 \times 1126$ character table is not available for this group.

Rational character table

The $827 \times 827$ rational character table is not available for this group.