Properties

Label 63888.n
Order \( 2^{4} \cdot 3 \cdot 11^{3} \)
Exponent \( 2^{2} \cdot 3 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 5^{2} \)
Perm deg. $48$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 48 | (1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48), (1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40), (1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48), (45,46)(47,48), (1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43), (2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44), (2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48), (1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43) >;
 
Copy content gap:G := Group( (1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48), (1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40), (1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48), (45,46)(47,48), (1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43), (2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44), (2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48), (1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43) );
 
Copy content sage:G = PermutationGroup(['(1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48)', '(1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40)', '(1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48)', '(45,46)(47,48)', '(1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43)', '(2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44)', '(2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48)', '(1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(35651720632163973339333780050375727232431782530092182225009870830945717841501281748315368788440831678753464467013208111503500900199,63888)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.8;
 

Group information

Description:$C_{11}^3:(C_2\times D_{12})$
Order: \(63888\)\(\medspace = 2^{4} \cdot 3 \cdot 11^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{11}^3.C_6.C_{10}^2.C_2^4$, of order \(12777600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$, $C_{11}$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 11 12 22 33 44 66 132
Elements 1 4247 242 264 5566 1330 5808 31690 2420 5060 2420 4840 63888
Conjugacy classes   1 7 1 2 3 95 4 225 5 25 5 10 383
Divisions 1 7 1 2 3 19 2 45 1 4 1 1 87

Minimal presentations

Permutation degree:$48$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid b^{22}=c^{12}=d^{11}=e^{11}=[b,e]=[d,e]=1, a^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, -2, -2, -11, -2, -2, -3, -11, 11, 316800, 634273, 41, 962, 944771, 151371, 29939, 91, 1390404, 1085932, 560580, 116, 1917701, 692749, 515349, 1655814, 1123598, 44382, 25574, 9286, 3717127, 15391, 3495, 21551]); a,b,c,d,e := Explode([G.1, G.2, G.4, G.7, G.8]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "c4", "d", "e"]);
 
Copy content gap:G := PcGroupCode(35651720632163973339333780050375727232431782530092182225009870830945717841501281748315368788440831678753464467013208111503500900199,63888); a := G.1; b := G.2; c := G.4; d := G.7; e := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(35651720632163973339333780050375727232431782530092182225009870830945717841501281748315368788440831678753464467013208111503500900199,63888)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.8;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(35651720632163973339333780050375727232431782530092182225009870830945717841501281748315368788440831678753464467013208111503500900199,63888)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.8;
 
Permutation group:Degree $48$ $\langle(1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 48 | (1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48), (1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40), (1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48), (45,46)(47,48), (1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43), (2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44), (2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48), (1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43) >;
 
Copy content gap:G := Group( (1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48), (1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40), (1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48), (45,46)(47,48), (1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43), (2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44), (2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48), (1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43) );
 
Copy content sage:G = PermutationGroup(['(1,2,7,9,5,8,15,23,16,17,29,19,13,6,4,14,21,18,12,25,3,10)(11,24,22,33,27,28,20,30,31,32,26)(34,35)(36,41)(37,42)(38,40)(39,43)(47,48)', '(1,3,12,21,4,13,29,16,15,5,7)(2,8,17,6,18,10,9,23,19,14,25)(11,24,22,33,27,28,20,30,31,32,26)(34,36,37,42,41,35,38,39,44,43,40)', '(1,4,15,3,13,5,12,29,7,21,16)(2,6,9,14,8,18,23,25,17,10,19)(11,22,27,20,31,26,24,33,28,30,32)(34,37,41,38,44,40,36,42,35,39,43)(45,46)(47,48)', '(45,46)(47,48)', '(1,5,16,13,21,3,7,15,29,4,12)(2,10,25,18,14,6,19,17,23,8,9)(11,24,22,33,27,28,20,30,31,32,26)(34,37,41,38,44,40,36,42,35,39,43)', '(2,9)(3,7)(4,16)(5,12)(8,10)(11,27)(13,29)(14,19)(15,21)(17,18)(20,32)(23,25)(24,33)(26,28)(30,31)(35,38)(36,40)(37,43)(39,41)(42,44)', '(2,8)(3,7)(4,16)(5,12)(6,14)(10,23)(11,28)(13,29)(15,21)(17,25)(18,19)(20,26)(22,33)(24,27)(30,32)(34,35,40,41,43,42,44,37,39,36,38)(45,47,46,48)', '(1,6,20,21,25,32)(2,11,5,17,27,13)(3,14,30,12,18,31)(4,10,26,7,19,28)(8,22,16)(9,24,15,23,33,29)(34,36)(35,39)(37,40)(41,44)(42,43)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 5 & 9 & 0 & 4 \\ 4 & 7 & 3 & 0 \\ 4 & 2 & 6 & 10 \\ 7 & 10 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ 6 & 6 & 8 & 0 \\ 6 & 6 & 7 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 9 & 10 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 2 & 10 \end{array}\right), \left(\begin{array}{rrrr} 4 & 10 & 1 & 7 \\ 6 & 8 & 9 & 1 \\ 8 & 9 & 5 & 1 \\ 0 & 8 & 5 & 9 \end{array}\right), \left(\begin{array}{rrrr} 6 & 10 & 10 & 0 \\ 7 & 4 & 2 & 7 \\ 1 & 5 & 6 & 2 \\ 1 & 2 & 6 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 7 & 3 & 3 \\ 8 & 7 & 2 & 7 \\ 1 & 7 & 9 & 10 \\ 2 & 7 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 2 & 5 & 1 \\ 2 & 6 & 5 & 5 \\ 10 & 8 & 3 & 9 \\ 0 & 10 & 9 & 9 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[5, 9, 0, 4, 4, 7, 3, 0, 4, 2, 6, 10, 7, 10, 2, 4], [10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10], [1, 0, 0, 0, 4, 5, 1, 0, 6, 6, 8, 0, 6, 6, 7, 1], [1, 0, 0, 0, 9, 10, 5, 0, 0, 0, 1, 0, 2, 0, 2, 10], [4, 10, 1, 7, 6, 8, 9, 1, 8, 9, 5, 1, 0, 8, 5, 9], [6, 10, 10, 0, 7, 4, 2, 7, 1, 5, 6, 2, 1, 2, 6, 6], [6, 7, 3, 3, 8, 7, 2, 7, 1, 7, 9, 10, 2, 7, 4, 0], [0, 2, 5, 1, 2, 6, 5, 5, 10, 8, 3, 9, 0, 10, 9, 9]] >;
 
Copy content gap:G := Group([[[ Z(11)^4, Z(11)^6, 0*Z(11), Z(11)^2 ], [ Z(11)^2, Z(11)^7, Z(11)^8, 0*Z(11) ], [ Z(11)^2, Z(11), Z(11)^9, Z(11)^5 ], [ Z(11)^7, Z(11)^5, Z(11), Z(11)^2 ]], [[ Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^5, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^5 ]], [[ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^2, Z(11)^4, Z(11)^0, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^3, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^7, Z(11)^0 ]], [[ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^6, Z(11)^5, Z(11)^4, 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^0, 0*Z(11) ], [ Z(11), 0*Z(11), Z(11), Z(11)^5 ]], [[ Z(11)^2, Z(11)^5, Z(11)^0, Z(11)^7 ], [ Z(11)^9, Z(11)^3, Z(11)^6, Z(11)^0 ], [ Z(11)^3, Z(11)^6, Z(11)^4, Z(11)^0 ], [ 0*Z(11), Z(11)^3, Z(11)^4, Z(11)^6 ]], [[ Z(11)^9, Z(11)^5, Z(11)^5, 0*Z(11) ], [ Z(11)^7, Z(11)^2, Z(11), Z(11)^7 ], [ Z(11)^0, Z(11)^4, Z(11)^9, Z(11) ], [ Z(11)^0, Z(11), Z(11)^9, Z(11)^9 ]], [[ Z(11)^9, Z(11)^7, Z(11)^8, Z(11)^8 ], [ Z(11)^3, Z(11)^7, Z(11), Z(11)^7 ], [ Z(11)^0, Z(11)^7, Z(11)^6, Z(11)^5 ], [ Z(11), Z(11)^7, Z(11)^2, 0*Z(11) ]], [[ 0*Z(11), Z(11), Z(11)^4, Z(11)^0 ], [ Z(11), Z(11)^9, Z(11)^4, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^6 ], [ 0*Z(11), Z(11)^5, Z(11)^6, Z(11)^6 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[5, 9, 0, 4], [4, 7, 3, 0], [4, 2, 6, 10], [7, 10, 2, 4]]), MS([[10, 0, 0, 0], [0, 10, 0, 0], [0, 0, 10, 0], [0, 0, 0, 10]]), MS([[1, 0, 0, 0], [4, 5, 1, 0], [6, 6, 8, 0], [6, 6, 7, 1]]), MS([[1, 0, 0, 0], [9, 10, 5, 0], [0, 0, 1, 0], [2, 0, 2, 10]]), MS([[4, 10, 1, 7], [6, 8, 9, 1], [8, 9, 5, 1], [0, 8, 5, 9]]), MS([[6, 10, 10, 0], [7, 4, 2, 7], [1, 5, 6, 2], [1, 2, 6, 6]]), MS([[6, 7, 3, 3], [8, 7, 2, 7], [1, 7, 9, 10], [2, 7, 4, 0]]), MS([[0, 2, 5, 1], [2, 6, 5, 5], [10, 8, 3, 9], [0, 10, 9, 9]])])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_{11}^3:C_6)$ . $D_4$ $(C_{22}.D_{11}^2)$ . $S_3$ $(C_{11}^2:D_{22})$ . $D_6$ $(C_{11}^2:D_6)$ . $D_{22}$ all 30

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 41 normal subgroups (27 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_{11}^3:(C_2^2\times S_3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{11}^2:C_{66}$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_{11}^3:(C_2^2\times S_3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{11}^2\times C_{22}$ $G/\operatorname{Fit} \simeq$ $C_2\times D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{11}^3:(C_2\times D_{12})$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{11}^2\times C_{22}$ $G/\operatorname{soc} \simeq$ $C_2\times D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3$

Subgroup diagram and profile

Series

Derived series $C_{11}^3:(C_2\times D_{12})$ $\rhd$ $C_{11}^2:C_{66}$ $\rhd$ $C_{11}^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{11}^3:(C_2\times D_{12})$ $\rhd$ $C_{11}^3:(C_2\times D_6)$ $\rhd$ $C_2\times C_{11}^3:C_6$ $\rhd$ $C_{11}^2:C_{66}$ $\rhd$ $C_{11}\wr C_3$ $\rhd$ $C_{11}^3$ $\rhd$ $C_{11}^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{11}^3:(C_2\times D_{12})$ $\rhd$ $C_{11}^2:C_{66}$ $\rhd$ $C_{11}\wr C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $383 \times 383$ character table is not available for this group.

Rational character table

The $87 \times 87$ rational character table is not available for this group.