Properties

Label 63281250.b
Order \( 2 \cdot 3^{4} \cdot 5^{8} \)
Exponent \( 2 \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{4} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34), (1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21) >;
 
Copy content gap:G := Group( (1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34), (1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21) );
 
Copy content sage:G = PermutationGroup(['(1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34)', '(1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20707802927184383948667153057062788108822968563732492400464241471181446192463865088556609962557090171105596609043570599961748761546163204196849366869728369673797692820448583854458179589705101405235506519728983394236624932339722638744456285774391166881813140461061044984086800135974008654456287808044101749599980905568776962694426956082133914189993437488641809800899176040731391672737833491971332410755343258593505851179007,63281250)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 

Group information

Description:$C_5^8.\He_3.C_6$
Order: \(63281250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(4050000000\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$ x 4, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 9 10 15 30
Elements 1 1125 413900 390624 2925000 14062500 3514500 16773600 25200000 63281250
Conjugacy classes   1 1 10 3242 8 2 404 2608 192 6468
Divisions 1 1 6 816 4 1 101 340 24 1294

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid c^{15}=d^{15}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 3, 3, 3, 5, 3, 5, 5, 5, 5, 5, 5, 5, 26, 182147954, 20640674, 564300024, 402925213, 453930987, 421621684, 338147033, 198, 2531899894, 421983345, 4802676845, 986060808, 579818569, 87389684, 304, 896092476, 970871284, 315419045, 95626485, 1465439047, 644014820, 841964793, 70972246, 4770552, 4715944748, 2078353506, 1171787911, 67950137, 1404073, 3574197909, 1880921272, 272551535, 361383798, 13932824, 73552060, 1831677728, 16624215, 272548039, 17458230, 3788904611, 4345457244, 1261391545, 143537990, 16389436, 7193843292, 1920498280, 364932047, 33903141, 15739892]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.4, G.6, G.8, G.9, G.10, G.11, G.12, G.13]); AssignNames(~G, ["a", "a2", "b", "c", "c3", "d", "d3", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(20707802927184383948667153057062788108822968563732492400464241471181446192463865088556609962557090171105596609043570599961748761546163204196849366869728369673797692820448583854458179589705101405235506519728983394236624932339722638744456285774391166881813140461061044984086800135974008654456287808044101749599980905568776962694426956082133914189993437488641809800899176040731391672737833491971332410755343258593505851179007,63281250); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20707802927184383948667153057062788108822968563732492400464241471181446192463865088556609962557090171105596609043570599961748761546163204196849366869728369673797692820448583854458179589705101405235506519728983394236624932339722638744456285774391166881813140461061044984086800135974008654456287808044101749599980905568776962694426956082133914189993437488641809800899176040731391672737833491971332410755343258593505851179007,63281250)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20707802927184383948667153057062788108822968563732492400464241471181446192463865088556609962557090171105596609043570599961748761546163204196849366869728369673797692820448583854458179589705101405235506519728983394236624932339722638744456285774391166881813140461061044984086800135974008654456287808044101749599980905568776962694426956082133914189993437488641809800899176040731391672737833491971332410755343258593505851179007,63281250)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13;
 
Permutation group:Degree $45$ $\langle(1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34), (1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21) >;
 
Copy content gap:G := Group( (1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34), (1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21) );
 
Copy content sage:G = PermutationGroup(['(1,21,38,10,15,26,42,19,35)(2,22,39,6,11,27,43,20,31)(3,23,40,7,12,28,44,16,32)(4,24,36,8,13,29,45,17,33)(5,25,37,9,14,30,41,18,34)', '(1,38,41,32,8,26,4,36,44,35,6,29,2,39,42,33,9,27,5,37,45,31,7,30,3,40,43,34,10,28)(11,20,23,13,17,25,15,19,22,12,16,24,14,18,21)'])
 
Transitive group: 45T3467 more information
Direct product: not computed
Semidirect product: $(C_5^8.C_3.\He_3)$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not computed
Possibly split product: $(C_5^8.C_3^3)$ . $S_3$ $(C_5^8.\He_3)$ . $C_6$ $(C_5^6.C_{15}^2:S_3)$ . $C_3$ $C_5^2$ . $(C_5^6:C_3\wr S_3)$ all 10

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 14 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^8.\He_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $6468 \times 6468$ character table is not available for this group.

Rational character table

The $1294 \times 1294$ rational character table is not available for this group.