Properties

Label 6250000.n
Order \( 2^{4} \cdot 5^{8} \)
Exponent \( 2 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{22} \cdot 3 \cdot 5^{8} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{18} \cdot 3 \cdot 7 \)
Perm deg. $40$
Trans deg. $40$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31), (1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36), (1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38) >;
 
Copy content gap:G := Group( (1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31), (1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36), (1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38) );
 
Copy content sage:G = PermutationGroup(['(1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31)', '(1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40)', '(1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36)', '(1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(65824689791044444428000133637636900806427047729499511719628909492189907501875000445472002083840157286410878978495618389487104281314097248390649030446266606055424077114153846263457976156334899743755486781223108058544689705254772694686482613950838800921219478991704092071135334399,6250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 

Group information

Description:$C_5^4.D_5^4$
Order: \(6250000\)\(\medspace = 2^{4} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(34406400000000\)\(\medspace = 2^{22} \cdot 3 \cdot 5^{8} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 5 10
Elements 1 399375 390624 5460000 6250000
Conjugacy classes   1 15 24960 1344 26320
Divisions 1 15 12480 672 13168

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid b^{10}=c^{10}=d^{10}=e^{5}=f^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, -2, -2, -5, -2, -5, -2, -5, -5, -5, 5, 5, 5, 64009440, 37779313, 61, 209880578, 166330563, 121857135, 40320267, 135, 249002404, 4816, 124977605, 176464817, 50943629, 8336921, 6480413, 209, 333614406, 166807218, 6762, 368832007, 214944019, 6518443, 2456707, 571320008, 321840020, 4536044, 21668, 573600009, 252000021, 27300045, 1518069, 25080010, 33000046, 1610470, 351360011, 7200047, 136871]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.6, G.8, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(65824689791044444428000133637636900806427047729499511719628909492189907501875000445472002083840157286410878978495618389487104281314097248390649030446266606055424077114153846263457976156334899743755486781223108058544689705254772694686482613950838800921219478991704092071135334399,6250000); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(65824689791044444428000133637636900806427047729499511719628909492189907501875000445472002083840157286410878978495618389487104281314097248390649030446266606055424077114153846263457976156334899743755486781223108058544689705254772694686482613950838800921219478991704092071135334399,6250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(65824689791044444428000133637636900806427047729499511719628909492189907501875000445472002083840157286410878978495618389487104281314097248390649030446266606055424077114153846263457976156334899743755486781223108058544689705254772694686482613950838800921219478991704092071135334399,6250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12;
 
Permutation group:Degree $40$ $\langle(1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31), (1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36), (1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38) >;
 
Copy content gap:G := Group( (1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31), (1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36), (1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38) );
 
Copy content sage:G = PermutationGroup(['(1,13,3,11,5,14,2,12,4,15)(6,40,8,38,10,36,7,39,9,37)(16,29,18,27,20,30,17,28,19,26)(21,35,22,34,23,33,24,32,25,31)', '(1,26,2,27,3,28,4,29,5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,18,14,16,12,19,15,17,13,20)(31,36,32,37,33,38,34,39,35,40)', '(1,31)(2,32)(3,33)(4,34)(5,35)(6,20)(7,16)(8,17)(9,18)(10,19)(11,22)(12,23)(13,24)(14,25)(15,21)(26,37,27,38,28,39,29,40,30,36)', '(1,31,5,32,4,33,3,34,2,35)(6,19)(7,18)(8,17)(9,16)(10,20)(11,24,15,25,14,21,13,22,12,23)(26,37)(27,36)(28,40)(29,39)(30,38)'])
 
Transitive group: 40T171396 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_5^4$ . $D_5^4$ (56) $C_5^6$ . $D_{10}^2$ (28) $(C_5^5.D_5^3)$ . $C_2$ (8) $(C_5^7:C_2^3)$ . $D_5$ (8) all 19

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 624 normal subgroups (4 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $26320 \times 26320$ character table is not available for this group.

Rational character table

The $13168 \times 13168$ rational character table is not available for this group.