Properties

Label 62208.ce
Order \( 2^{8} \cdot 3^{5} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. $24$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24), (1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24), (1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24) >;
 
Copy content gap:G := Group( (1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24), (1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24), (1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24)', '(1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24)', '(1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24901296336615029541503626633733895344903157278679409795390767930948677707832970366710117530223575497403820332187287622587540672760759727643181965741326405086522275833031733780640300255959708040331668587679486030779663066455101396255688677385386,62208)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.11; g = G.13;
 

Group information

Description:$C_6^3.(D_6\times S_4)$
Order: \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$D_5^3.C_2^2$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 5
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 3583 944 4608 15776 1728 30384 5184 62208
Conjugacy classes   1 17 13 15 181 2 91 4 324
Divisions 1 17 13 15 178 2 75 4 305
Autjugacy classes 1 15 9 12 89 2 33 3 164

Minimal presentations

Permutation degree:$24$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid c^{12}=d^{6}=e^{6}=f^{6}=g^{2}=[d,e]=[d,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 84864, 222405, 66, 1213370, 205012, 1434579, 22168, 752729, 146, 3034204, 1028837, 758580, 186, 3762, 2778054, 445555, 504536, 238101, 266, 2575879, 748820, 322017, 5038, 5964200, 1954389, 686590, 497063, 346, 449289, 243382, 346355, 37488, 5868730, 3315335, 1528992, 684733, 426, 2156555, 1909464, 876133, 269618, 511068, 255553, 2080766, 6135]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.7, G.9, G.11, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "c4", "d", "d2", "e", "e2", "f", "f2", "g"]);
 
Copy content gap:G := PcGroupCode(24901296336615029541503626633733895344903157278679409795390767930948677707832970366710117530223575497403820332187287622587540672760759727643181965741326405086522275833031733780640300255959708040331668587679486030779663066455101396255688677385386,62208); a := G.1; b := G.2; c := G.4; d := G.7; e := G.9; f := G.11; g := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24901296336615029541503626633733895344903157278679409795390767930948677707832970366710117530223575497403820332187287622587540672760759727643181965741326405086522275833031733780640300255959708040331668587679486030779663066455101396255688677385386,62208)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.11; g = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(24901296336615029541503626633733895344903157278679409795390767930948677707832970366710117530223575497403820332187287622587540672760759727643181965741326405086522275833031733780640300255959708040331668587679486030779663066455101396255688677385386,62208)'); a = G.1; b = G.2; c = G.4; d = G.7; e = G.9; f = G.11; g = G.13;
 
Permutation group:Degree $24$ $\langle(1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24), (1,4,6,3,7,2,5,8,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24), (1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24), (1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24) >;
 
Copy content gap:G := Group( (1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24), (1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24), (1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24) );
 
Copy content sage:G = PermutationGroup(['(1,2,5,9,3,6)(4,8)(10,11)(12,13)(14,15,18,17)(16,20,19,21)(22,23,24)', '(1,4,6,3,7,2,5,8,9)(10,12)(11,13)(14,17)(15,19,21,16,20,18)(23,24)', '(1,3,5)(2,4,9,7,6,8)(11,12)(14,16)(15,17)(22,23,24)'])
 
Transitive group: 36T17208 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_6^4.S_3)$ . $D_4$ $(C_6^3:S_4)$ . $D_6$ $(C_6^3:S_4)$ . $D_6$ $(C_6^3.S_4)$ . $D_6$ all 87

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 99 normal subgroups (97 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_6^4:(C_2\times D_6)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2\times C_6^4.C_3$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2\times C_6^2$ $G/\Phi \simeq$ $S_4\times S_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2\times C_6^4$ $G/\operatorname{Fit} \simeq$ $C_2\times D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_6^3.(D_6\times S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6^2$ $G/\operatorname{soc} \simeq$ $C_2\times C_6^2:D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4:C_3$

Subgroup diagram and profile

Series

Derived series $C_6^3.(D_6\times S_4)$ $\rhd$ $C_2\times C_6^4.C_3$ $\rhd$ $C_2^2\times C_6^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_6^3.(D_6\times S_4)$ $\rhd$ $C_6^3.(A_4\times D_6)$ $\rhd$ $C_2\times C_6^4.C_6$ $\rhd$ $C_2\times C_6^4.C_3$ $\rhd$ $C_6^4.C_3$ $\rhd$ $C_3\times C_6^2:A_4$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_2^2\times C_6^2$ $\rhd$ $C_6^2$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_6^3.(D_6\times S_4)$ $\rhd$ $C_2\times C_6^4.C_3$ $\rhd$ $C_6^4.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $324 \times 324$ character table is not available for this group.

Rational character table

The $305 \times 305$ rational character table is not available for this group.