Properties

Label 6144.ei
Order \( 2^{11} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \cdot 3 \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24), (1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22) >;
 
Copy content gap:G := Group( (1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24), (1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22) );
 
Copy content sage:G = PermutationGroup(['(1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24)', '(1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9122361431221107836507535698744971618608931397607302727086915425216120027603188481631001674426813816016345377497883476362542947800009942522910931245995340926251775848704,6144)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12;
 

Group information

Description:$C_2^9.D_6$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_5\wr C_4$, of order \(1179648\)\(\medspace = 2^{17} \cdot 3^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 511 512 3584 512 1024 6144
Conjugacy classes   1 61 1 38 1 2 104
Divisions 1 61 1 25 1 1 90
Autjugacy classes 1 11 1 6 1 1 21

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 12
Irr. complex chars.   4 5 12 0 55 28 104
Irr. rational chars. 4 3 12 1 29 41 90

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 12 12
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{12}=c^{2}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, -2, -2, -2, -3, -2, 2, 2, 2, 2, 2, 2, 2, 51408, 35089, 61, 105266, 98, 53763, 360004, 30976, 66268, 33340, 361157, 180593, 39341, 19265, 225798, 250002, 25230, 13650, 336391, 29971, 10399, 7531, 412136, 281252, 42152, 26288, 535689, 126741, 31713, 4365, 104554, 378598, 184570, 66970, 241931, 120983, 171107, 30287]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.2, G.5, G.6, G.7, G.8, G.9, G.10, G.11, G.12]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(9122361431221107836507535698744971618608931397607302727086915425216120027603188481631001674426813816016345377497883476362542947800009942522910931245995340926251775848704,6144); a := G.1; b := G.2; c := G.5; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10; i := G.11; j := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9122361431221107836507535698744971618608931397607302727086915425216120027603188481631001674426813816016345377497883476362542947800009942522910931245995340926251775848704,6144)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(9122361431221107836507535698744971618608931397607302727086915425216120027603188481631001674426813816016345377497883476362542947800009942522910931245995340926251775848704,6144)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12;
 
Permutation group:Degree $24$ $\langle(1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24), (1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24), (1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22) >;
 
Copy content gap:G := Group( (1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24), (1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22) );
 
Copy content sage:G = PermutationGroup(['(1,18)(2,17)(3,15)(4,16)(5,14,6,13)(7,22,8,21)(9,19,10,20)(11,23,12,24)', '(1,9,4,11,5,8,2,10,3,12,6,7)(13,23,15,20,18,21,14,24,16,19,17,22)'])
 
Transitive group: 24T7837 24T8761 24T8786 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $D_6$ $(C_2^7.S_4)$ . $C_2$ (2) $(C_2^9.C_2)$ . $S_3$ $(C_2^6:C_4)$ . $S_4$ (3) all 18

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 41 normal subgroups (12 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to 1536.408544623
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^5$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $104 \times 104$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $90 \times 90$ rational character table.