Properties

Label 612220032.fm
Order \( 2^{7} \cdot 3^{14} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{17} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28), (1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18), (1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22) >;
 
Copy content gap:G := Group( (1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28), (1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18), (1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22) );
 
Copy content sage:G = PermutationGroup(['(1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28)', '(1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18)', '(1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2070639462530082825176461938201769010056590585794732005904788470215408937098465122141020514500910218032958876813879303653252105069430902691911255170918223247008895752588093934536997193700647025088420130312284531593348467538303765597564121173975484225412036685159354321391177487289713540535780146293974940407962517296746704239185020569222328151676190198321343420223660690666124207613720113900057306403161779853610340144345727236593189079707639588981491970235191711097841921495879836059841165331991583993790482643750985169867487482636226958199870659190003378671476196375618954854443686593655034306568440431724644869615101584376912502675747581217831564231687405914270301008838486379922877339991083430251460352245036701562997992572101582440145536071663213987603100183857776483970809952359575213471393664875761891675059961828464559027600459660428576084091939802618386836071649561873388866656441158246816398002930573003587733749037252355079736107887455241042976098132602916591011024371740708518563320912594126645484132705867820122016425155239658568830528264230563460890799792321126833768419794651891525846012676647790019651546197593300294045233318846844857148633322822154761293929727885312020212375219812078722103935098344174257057273870965241538404344887530294553876216476935058151081924556776827787363884364041849848194482427227819908285703176250277507651701179363495378407134508445833595307174564659757085300836344332689451457686450129338350142969343,612220032)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 

Group information

Description:$C_3^8.C_2^5:(\He_3^2:C_4)$
Order: \(612220032\)\(\medspace = 2^{7} \cdot 3^{14} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(132239526912\)\(\medspace = 2^{10} \cdot 3^{17} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 14
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 264519 1896128 20312856 72424800 17006112 41150592 247533408 75582720 136048896 612220032
Conjugacy classes   1 7 1593 8 6675 4 457 121 516 20 9402
Divisions 1 7 991 6 3669 2 354 63 334 6 5433

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid a^{4}=f^{6}=g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 42, 34337252630, 16206516293, 170, 44661571587, 11258343624, 4221201666, 54940385644, 19555106785, 1583093026, 5591615467, 2548778488, 54753821141, 7563566834, 3458904167, 6165139622, 741331421, 362, 57969798102, 3752536059, 20320967820, 4296381711, 747236664, 279481236, 44610613831, 24315191740, 2569653121, 6876762046, 3335325427, 932548288, 123615709, 490, 38591111672, 23809210013, 16927630826, 8435891843, 3547653320, 717586241, 269204930, 79362032, 82262265129, 10117275870, 8734430931, 2447466912, 3241380333, 1339170954, 429960015, 24522276, 11034627, 618, 26749844362, 5561807359, 11352637348, 9967574305, 1892106310, 1318468651, 181879372, 13474849, 72749932, 84511939691, 20392077920, 20829547925, 4375924634, 2275284911, 1510079876, 634935809, 127874534, 125676863, 52909616, 3307721, 746, 105692356236, 10019842593, 1224883350, 2513452107, 200963040, 1179477, 90771567, 45369289741, 23593006114, 13401376183, 14231246476, 566963809, 1581249718, 372260587, 31498144, 131770981, 23157994, 3859876, 7142567054, 11507469155, 10912255256, 5654532317, 1818709298, 2449559, 4337141775, 282175524, 1975228473, 18129775182, 2233889379, 744629880, 1007209869, 423916578, 167868471, 55956300, 11775702, 48669393040, 4147391845, 14840667130, 18238530319, 2473444612, 1374135961, 399748750, 97855291, 225899788, 1619599, 154385263889, 19999187750, 2195678075, 22737171824, 361537445, 1825322810, 436490351, 112429460, 241392497, 1837328, 29152255122, 13570877415, 40712632188, 6785438769, 6785438790, 376968939, 565453368, 188484573, 62828322, 6981111, 117573139, 4761711400, 2380855741, 21427701202, 396809383, 1190427964, 66135025, 44090086, 198404827, 3674410, 63330761108, 89996344745, 7499695454, 1249949315, 2499898568, 138883373, 208325018, 138883415, 11573792, 69441833, 11573855]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(2070639462530082825176461938201769010056590585794732005904788470215408937098465122141020514500910218032958876813879303653252105069430902691911255170918223247008895752588093934536997193700647025088420130312284531593348467538303765597564121173975484225412036685159354321391177487289713540535780146293974940407962517296746704239185020569222328151676190198321343420223660690666124207613720113900057306403161779853610340144345727236593189079707639588981491970235191711097841921495879836059841165331991583993790482643750985169867487482636226958199870659190003378671476196375618954854443686593655034306568440431724644869615101584376912502675747581217831564231687405914270301008838486379922877339991083430251460352245036701562997992572101582440145536071663213987603100183857776483970809952359575213471393664875761891675059961828464559027600459660428576084091939802618386836071649561873388866656441158246816398002930573003587733749037252355079736107887455241042976098132602916591011024371740708518563320912594126645484132705867820122016425155239658568830528264230563460890799792321126833768419794651891525846012676647790019651546197593300294045233318846844857148633322822154761293929727885312020212375219812078722103935098344174257057273870965241538404344887530294553876216476935058151081924556776827787363884364041849848194482427227819908285703176250277507651701179363495378407134508445833595307174564659757085300836344332689451457686450129338350142969343,612220032); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2070639462530082825176461938201769010056590585794732005904788470215408937098465122141020514500910218032958876813879303653252105069430902691911255170918223247008895752588093934536997193700647025088420130312284531593348467538303765597564121173975484225412036685159354321391177487289713540535780146293974940407962517296746704239185020569222328151676190198321343420223660690666124207613720113900057306403161779853610340144345727236593189079707639588981491970235191711097841921495879836059841165331991583993790482643750985169867487482636226958199870659190003378671476196375618954854443686593655034306568440431724644869615101584376912502675747581217831564231687405914270301008838486379922877339991083430251460352245036701562997992572101582440145536071663213987603100183857776483970809952359575213471393664875761891675059961828464559027600459660428576084091939802618386836071649561873388866656441158246816398002930573003587733749037252355079736107887455241042976098132602916591011024371740708518563320912594126645484132705867820122016425155239658568830528264230563460890799792321126833768419794651891525846012676647790019651546197593300294045233318846844857148633322822154761293929727885312020212375219812078722103935098344174257057273870965241538404344887530294553876216476935058151081924556776827787363884364041849848194482427227819908285703176250277507651701179363495378407134508445833595307174564659757085300836344332689451457686450129338350142969343,612220032)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2070639462530082825176461938201769010056590585794732005904788470215408937098465122141020514500910218032958876813879303653252105069430902691911255170918223247008895752588093934536997193700647025088420130312284531593348467538303765597564121173975484225412036685159354321391177487289713540535780146293974940407962517296746704239185020569222328151676190198321343420223660690666124207613720113900057306403161779853610340144345727236593189079707639588981491970235191711097841921495879836059841165331991583993790482643750985169867487482636226958199870659190003378671476196375618954854443686593655034306568440431724644869615101584376912502675747581217831564231687405914270301008838486379922877339991083430251460352245036701562997992572101582440145536071663213987603100183857776483970809952359575213471393664875761891675059961828464559027600459660428576084091939802618386836071649561873388866656441158246816398002930573003587733749037252355079736107887455241042976098132602916591011024371740708518563320912594126645484132705867820122016425155239658568830528264230563460890799792321126833768419794651891525846012676647790019651546197593300294045233318846844857148633322822154761293929727885312020212375219812078722103935098344174257057273870965241538404344887530294553876216476935058151081924556776827787363884364041849848194482427227819908285703176250277507651701179363495378407134508445833595307174564659757085300836344332689451457686450129338350142969343,612220032)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Permutation group:Degree $36$ $\langle(1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28), (1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18), (1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22) >;
 
Copy content gap:G := Group( (1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28), (1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18), (1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22) );
 
Copy content sage:G = PermutationGroup(['(1,5,23,17,3,4,22,18,2,6,24,16)(7,27,20,34,9,26,21,36,8,25,19,35)(10,32,12,31)(11,33)(13,29,14,30)(15,28)', '(1,9,25,31)(2,8,26,32)(3,7,27,33)(4,23,28,34)(5,22,30,36)(6,24,29,35)(10,19,11,21)(12,20)(13,17,14,16)(15,18)', '(1,29,13,21,36,33,10,18)(2,30,15,20,34,31,12,17)(3,28,14,19,35,32,11,16)(4,26,8,24)(5,27,7,23)(6,25,9,22)'])
 
Transitive group: 36T89455 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2\times A_4^2:C_4)$ $(C_3^{12}.C_2)$ . $(A_4^2:C_4)$ $(C_3^{10}.C_2^5)$ . $(C_3^4:C_4)$ $C_3^{10}$ . $(C_2^5:(C_3^4:C_4))$ all 30

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3} \times C_{6}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 56 normal subgroups (38 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $9402 \times 9402$ character table is not available for this group.

Rational character table

The $5433 \times 5433$ rational character table is not available for this group.